LTE Basics - II

10,045 views

Published on

LTE Basics - II

Published in: Sports, Technology

LTE Basics - II

  1. 1. 1Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn LTE Tutorial part 2 Advanced topics in LTE Marius Pesavento - marius.pesavento@mimoOn.de Willem Mulder - willem.mulder@mimoOn.de
  2. 2. 2Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Outline Advanced topics in LTE  The LTE MIMO modes  Codebook-based precoding  Closed loop operation  CQI reporting modes  Using antenna port 5 (SDMA) techniques  Simulation results  Outlook LTE Advanced
  3. 3. 3Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn MIMO Channel MIMO detector
  4. 4. 4Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn MIMO Precoding optimum „Eigen“ precoding requires perfect channel knowledge (CSI) at the Transmitter
  5. 5. 5Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Parallel AWGN channels Equivalent SISO channels
  6. 6. 6Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Tx Beam 1 Tx Beam 2 Rx Beam 1 Rx Beam 2Transmit Beamformer(s) Receive Beamformer(s) Transmit/Receive beamforming interpretation
  7. 7. 7Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Codebook based Spatial Multiplexing (SM)  Precoding matrix is selected from codebook  Reduced signaling at cost of quantization error (lose rate optimality)  Equivalent MIMO channels no longer parallel (decoupled), reduction in rate  Receiver matrix can be designed arbitrarily. In practice interference among the streams not completely removed:  receive SINR for the k-th stream
  8. 8. 8Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn MIMO Tx processing blocks in LTE (spatial MUX)  maximum 4 spatial streams (layers)  maximum 2 TBs (codewords), each with corresponding MCS.  2Tx: Code-book with 2 precoding matrices (closed-loop)  is selected from set of 16 precoding matrices.  code contains matrices of type: (and column permutated versions) Turbo encoder Rate Match TB 1 TB 2 CR 1 CR 2 modulator modulator MS 1 MS 2 2-MUX or 1-MUX 2-MUX or 1-MUX layer mapping layer 0 layer 1 layer 2 layer 3 IFFT frame mapper frequency first, then OFDM symbol index Tx 0 Tx 1 Tx 2 Tx 3 IFFT frame mapper frequency first, then OFDM symbol index IFFT frame mapper frequency first, then OFDM symbol index IFFT frame mapper frequency first, then OFDM symbol index Precoding ; ; ; Turbo encoder Rate Match
  9. 9. 9Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn MIMO schemes  Transmit diversity  increase the reliability of the link, migrate fading  diversity order / diversity gain: number of inpendent replica (fades) of the signal  Spatial multiplexing  increase spectral efficiency  multiplexing gain: number of spatial streams transmitted on a time- frequency resource  upper-bounded by min(Mt,Mr)  requires rich multipath environment ⇒ full channel rank  Beamforming (rank 1)  Tx and Rx beamforming  array gain through coherent combining increases signal-to-noise-and- interference-ratio (SINR)  requires correlated antennas (e.g. in Line-Of-Sight transmission) fading multipath fading constructive or destuctive superposition LOS ⇒ rank 1 Single stream only!
  10. 10. 10Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn DL-MIMO modes in LTE  Single antenna port (no MIMO)  Transmit Diversity (TD), space-frequency Alamouti code  Open-loop Spatial Multiplexing (SM)  Closed-loop SM  Multi-User (MU) MIMO  Rank 1 closed-loop SM (compressed control signaling)  Antenna port 5 beamforming, UE specific reference signals
  11. 11. 11Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Cyclic (Large) Delay Diversity (CDD) x0 small delay spread frequency “flat” delay spread frequency selective τ0 τ3 τ1 τ2 τ3 „artificial“ multipath x0 τ1 τ2
  12. 12. 12Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Open-loop SM  Inferference „randomization“.  In single layer transmission (TRI = 1) TD mode (Alamouti) is used.  is matrix formed from permutation of vectors:  column permutation changing every k subcarriers in a pre-defined manner. TB 1 TB 2 CR 1 CR 2 modulator modulator MS 1 MS 2 2-MUX or 1-MUX 2-MUX or 1-MUX layer mapping L0 L1 L2 L3 IFFT frame mapper frequency first, then OFDM symbol index Tx0 Tx1 Tx2 Tx3 IFFT frame mapper frequency first, then OFDM symbol index IFFT frame mapper frequency first, then OFDM symbol index IFFT frame mapper frequency first, then OFDM symbol index Turbo encoder Turbo encoder Pre- coding DFT Matrix Cyclic Delay Matrix
  13. 13. 13Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Spatial Diversity Space-Time-Coding: Alamouti Symbol modulator encoded bit stream …,b3, b2, b1, b0,... … s1, s0,... … s*0, -s*1,... … y1, y0,... h0 h1 … s1, s0,... space-time encoder space-time decoder y*1 y0 equivalent „MIMO“ channel „MIMO“ equalizer/detector decoder s1 s0 No CSI at the transmitter required!!!
  14. 14. 14Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Space-Frequency Transmit Diversity “Alamouti-zation”  Single CW transmission, i.e single MCS.  Simple receiver structure, no matrix inversion required XS0S10 S2S3 XS50 port #0 0 00 00 0X0X 00 port #1 subcarrier index port #2 port #3 IFFT IFFT IFFT IFFT S4 0 0000 00 000 S6S7 0 S4 * -S3 *S2 * -S1 *S0 * 0000 -S7 *S6 * -S5 * 00 0 „zeros“ as reference signal place holder 0 „zeros“ from orthogonal SF code X reference signal S1 data symbol equivalent channel received vector equalized symbol rather feed un-scaled „equalized symbol“ and scaling factor to soft demodulator than perform division at this point
  15. 15. 15Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Diversity order (Symbol) error rate: Diversity gain: Coding gain:
  16. 16. 16Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Multiplexing – Diversity tradeoff LTE spatial diversity techniques achieve:  diversity order (Mt£Mr):  full diversity for 2Tx  half diversity for 4Tx  rate (min(Mt , Mr)):  full rate only for single antenna receiver  half rate for 2Tx and 2Rx  ¼ rate for 4Tx and 4Rx  In LTE orthogonal space frequency block codes (OSTBC) are used that allow simple receiver structures ⇒Symbol by symbol detection rather than vector detection.
  17. 17. 17Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Cell-Edge Beamforming  to improve coverage for cell-edge user.  to reduce inter-and intra-cell interference.  rank-1 assumption (LOS). reduced signaling overhead  eNB aquires statistical information, e.g. DoDs of co-channel users at cell-edge  eNB computes optimum beamformer weights for each user and applies them in the DL transmission, no codebook and subband restriction.  multiple users are served on overlapping resources (MU-MIMO)  beamformer weights are explicitly signaled using user specific RS.  UE “sees” equivalent SI channel.  dedicated RS of all users in a cell are transmitted on the same RE (interference), UE correlates received signal with dedicated (RNTI-based) pseudo random sequence.  LTE-feature that is expected to not be supported at initial network rollout. LOS LOS LOS LOS cell-specific frequency shift
  18. 18. 18Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Femtocell basestation FU1 FU2 MU1 MU2 MU3 Macro basestation Antenna port 5 downlink beamforming Space Division Multiple Access (SDMA)
  19. 19. 19Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Beamformer design and signaling  Beamformers can be implicitly signaled to the users of the cell using antenna port 5 reference signals. Problem: Uncertainties in the DL channels  UL-DL reciprocity (e.g. in TDD)  channel feedback (requires cooperation of base stations)  Paramterer estimation, Line-Of-Sight Robust designs wrt. channel mismatch can be used. Subject to QoS constraint for femtocell user Maximum interference constrainst for macrocell user
  20. 20. 20Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn CQI report and 4-bit CQI table CQI index modulation code rate x 1024 efficiency 0 out of range 1 QPSK 78 0.1523 2 QPSK 120 0.2344 3 QPSK 193 0.3770 4 QPSK 308 0.6016 5 QPSK 449 0.8770 6 QPSK 602 1.1758 7 16QAM 378 1.4766 8 16QAM 490 1.9141 9 16QAM 616 2.4063 10 64QAM 466 2.7305 11 64QAM 567 3.3223 12 64QAM 666 3.9023 13 64QAM 772 4.5234 14 64QAM 873 5.1152 15 64QAM 948 5.5547 subband CQI index =differential CQI + wideband CQI index Differential CQI value Offset level 0 ≤1 1 2 2 3 3 ≥4 Spatial differential CQI value Offset level 0 0 1 1 2 2 3 ≥3 4 ≤-4 5 -3 6 -2 7 -1 3-bit subband/wideband spatial differential CQI 2-bit subband differential CQI
  21. 21. 21Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Adaptive coding and modulation in DL grant Tdoc R1-07CQI_NNSN01 MCS Index Modul ation Order TBS Index TBS for 1 RB 1layer … TBS for 110 RBs 1layer 0 2 0 16 … 3112 1 2 1 24 … 4008 2 2 2 32 … 4968 3 2 3 40 … 6456 4 2 4 56 … 7992 5 2 5 72 … 9528 6 2 6 328 … 11448 7 2 7 104 … 13536 8 2 8 120 … 15264 9 2 9 136 … 17568 10 4 9 136 … 17568 11 4 10 144 … 19080 12 4 11 176 … 22152 13 4 12 208 … 25456 14 4 13 224 … 28336 15 4 14 256 … 31704 16 4 15 280 … 34008 17 6 15 280 … 34008 18 6 16 328 … 35160 19 6 17 336 … 39232 20 6 18 376 … 43816 21 6 19 408 … 46888 22 6 20 440 … 51024 23 6 21 488 … 55056 24 6 22 520 … 59256 25 6 23 552 … 63776 26 6 24 584 … 66592 27 6 25 616 … 71112 28 6 26 712 … 75376 29 2 reserve d reserved … reserved30 4 31 6 for code rate approx 1 LTE target!!!
  22. 22. 22Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn SINR to CQI conversion for MMSE detector 4 x 4 MIMO, full-rank for subcarrier k , precoding index i, and precoding matrix Pi MMSE estimate of SINR corresponding to layer p and PMI i subcarrier layer (column in PM) PMI
  23. 23. 23Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Average (effective) SINR Estimate for CW 0 (corresponds to averaging over layer 1 and 2) Weighting function for average SINR computation (based on rate) SINR(2) SINR(1) SINR(3) SINR(4) SINR(N-2) SINI(N-1) SINR(N) SINR(N-3) General: averaging over layer, subcarriers,…
  24. 24. 24Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn MIMO transmission modes Transmission mode Transmission scheme of PDSCH 1 Single-antenna port, port 0 2 Transmit diversity 3 Transmit diversity if the associated rank indicator is 1, otherwise large delay CDD 4 Closed-loop spatial multiplexing 5 Multi-user MIMO 6 Closed-loop spatial multiplexing with a single transmission layer 7 If the number of PBCH antenna ports is one, Single-antenna port, port 0; otherwise Transmit diversity open-loop, no-PMI feedback closed-loop, with PMI feedback
  25. 25. 25Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn CQI reporting modes No PMI Single PMI Multiple PMI Wideband (wideband CQI) Mode 1-2 UE Selected (subband CQI) Mode 2-0 Mode 2-2 Higher Layer- configured (suband CQI) Mode 3-0 Mode 3-1 Transmission mode 4 : Modes 1-2, 2-2, 3-1 Transmission mode 5 : Mode 3-1 Transmission mode 6 : Modes 1-2, 2-2, 3-1 Transmission mode 7 : Modes 2-0, 3-0 Transmission mode 1 : Modes 2-0, 3-0 Transmission mode 2 : Modes 2-0, 3-0 Transmission mode 3 : Modes 2-0, 3-0 PMI Feedback Type No PMI Single PMI Wideband Mode 1-0 Mode 1-1 (wideband CQI) UE Selected Mode 2-0 Mode 2-1 (subband CQI) Transmission mode 4 : Modes 1-1, 2-1 Transmission mode 5 : Modes 1-1, 2-1 Transmission mode 6 : Modes 1-1, 2-1 Transmission mode 7 : Modes 1-0, 2-0 Transmission mode 1 : Modes 1-0, 2-0 Transmission mode 2 : Modes 1-0, 2-0 Transmission mode 3 : Modes 1-0, 2-0 PUSCH CQI: aperiodic Feedback Type PUCCH CQI: periodic Feedback Type
  26. 26. 26Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Higher layer configured reporting modes: aperidodic reporting #bits 2N 4 ∆CQI(2) ∆CQI(1) ∆CQI(3) ∆CQI(4) ∆CQI(N-3) ∆CQI(N-2) ∆CQI(N-1) ∆CQI(N) CQI(wideband) Frequency(subbands) ∆CQI(2) ∆CQI(1) ∆CQI(3) ∆CQI(4) ∆CQI(N-3) ∆CQI(N-2) ∆CQI(N-1) ∆CQI(N) CQI(wideband) Frequency(subbands) mode 3-0 single antenna, port 5 TD and open-loop SM mode 3-1 closed-loop SM PMI(wideband) ∆CQI(2) ∆CQI(1) ∆CQI(3) ∆CQI(4) ∆CQI(N-3) ∆CQI(N-2) ∆CQI(N-1) ∆CQI(N) CQI(wideband) CW 0 CW 1 #bits 2N 4 2N 4 2|1|4 +Rank Indicator (RI) SINR(2) SINR(1) SINR(3) SINR(4) SINR(N-2) SINI(N-1) SINR(N) SINR SINR(N-3)
  27. 27. 27Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn UE selected reporting: mode 2-0 for single antenna, port 5, TD and open loop SM: aperiodic reporting report # of bits bitmap of prefered M subband locations wideband CQI 4 subband ∆CQI 2 L CQI(N-1) CQI(N) CQI(N-2) CQI(N-3) CQI(4) CQI(3) CQI(2) CQI(1) Frequency (subbands) SINR(N-1) SINR(N) SINR(N-2) SINR(N-3) SINR(4) SINR(3) SINI(2) SINR(1) measurements CQI(wideband) ∆average CQI(selected subbands) SINR
  28. 28. 28Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn UE selected reporting: mode 2-2 for closed-loop SM: aperidodic reporting report location of preferred subbands subband CQI subband CQI #bits L 4|2|8 4 2 4 2measurements per PMI required !!! select best PMI and subands (in terms of combined data rate) SINR SINR CQI(2) CQI(1) CQI(3) CQI(4) CQI(N-3) CQI(N-2) CQI(N-1) CQI(N) Frequency(subbands) SINR(2) SINR(1) SINR(3) SINR(4) SINR(N-3) SINR(N-2) SINI(N-1) SINR(N) SINR(2) SINR(1) SINR(3) SINR(4) SINR(N-2) SINI(N-1) SINR(N) CW 0 CW 1 SINI(N-3) CQI(2) CQI(1) CQI(3) CQI(4) CQI(N-3) CQI(N-2) CQI(N-1) CQI(N) ∆averageCQI(selectedsubbands) ∆averageCQI(selectedsubbands) CW 0 CW 1 CQI(2) CQI(1) CQI(3) CQI(4) CQI(N-3) CQI(N-2) CQI(N-1) CQI(N) PMI CQI(wideband) CQI(wideband) +Rank Indicator (RI)
  29. 29. 29Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Wideband CQI reporting modes: aperidodic reporting #bits 4 4 2N| N|4N PMI(2) PMI(1) PMI(3) PMI(4) PMI(N-3) PMI(N-2) PMI(N-1) PMI(N) CQI(wideband) Frequency(subbands) mode 1-2 closed-loop SM CQI(wideband) CW0 CW1 +Rank Indicator (RI) SINR(2) SINR(1) SINR(3) SINR(4) SINR(N-2) SINI(N-1) SINR(N) SINR SINR(N-3)
  30. 30. 30Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Higher layer configured reporting modes for perdiodic feedback: perdiodic reporting #bits 4 2|1|4 CQI(wideband) Frequency(subbands) CQI(wideband) Frequency(subbands) mode 1-1 (rank 1) closed-loop SM, MU-MIMO mode 1-1 (rank 2) closed-loop SM, MU-MIMO PMI(wideband) differentialspatialCQI(wideband) CW 0 CW 1 #bits 4 3 2|1|4 PMI(wideband) CW 0 CQI(wideband) Frequency(subbands) mode 1-0 single antenna port, open-loop SM, TD #bits 4 CW 0 +Rank Indicator (RI)
  31. 31. 31Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn UE selected reporting: mode 2-0 for single antenna, port 5, TD and open loop SM: periodic reporting report # of bits bitmap of prefered M subband locations for current bandwidth part L wideband CQI 4 subband CQI 4 CQI(N-1) CQI(N) CQI(N-2) CQI(N-3) CQI(4) CQI(3) CQI(2) CQI(1) Frequency (subbands) SINR(N-1) SINR(N) SINR(N-2) SINR(N-3) SINR(4) SINR(3) SINI(2) SINR(1) measurements CQI(wideband) CQI(selected subbands) SINR N1 N2 N J   JkNL //log DL RB2=
  32. 32. 32Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn UE selected reporting: mode 2-1for closed-loop SM: periodic reporting report location of preferred subbands in Bandwidth part j sub- band CQI sub- band CQI #bits L 2|1|4 4 4 3 3   JkNL //log DL RB2= CQI(2) CQI(1) CQI(3) CQI(4) CQI(N-3) CQI(N-2) CQI(N-1) CQI(N) Frequency(subbands) SINR(2) SINR(1) SINR(3) SINR(4) SINR(N-3) SINR(N-2) SINI(N-1) SINR(N) SINR(2) SINR(1) SINR(3) SINR(4) SINR(N-2) SINI(N-1) SINR(N) CW 0 CW 1 SINI(N-3) CQI(2) CQI(1) CQI(3) CQI(4) CQI(N-3) CQI(N-2) CQI(N-1) CQI(N) CQI(selectedsubbands) differentialCQI(selectedsubbands) CW 0 CW 1 measurements per PMI !!! CQI(2) CQI(1) CQI(3) CQI(4) CQI(N-3) CQI(N-2) CQI(N-1) CQI(N) PMI select best PMI and subands (in terms of combined data rate) differentialspatialCQI(wideband) CQI(wideband) SINR SINR N1 NJ k = subband size J = number of bandwidth parts (see also next slide) +Rank Indicator (RI)
  33. 33. 33Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Report timing configuration for mode 2-1: periodic reporting report location of preferred subbands in Bandwidth part j PMI WB CQI CW1 sub- band CQI WB CQI CW2 sub- band CQI #bits L 2|1|4 4 4 3 3 RI SB CQI j = 0 WB CQI SB CQI j= 1 SB CQI j = 2 WB CQI J = 3: SB bitmap-report is split into J bandwidth parts that are reported in consecutive intervals SB CQI j = 0 SB CQI j= 1 SB CQI j = 2 SB CQI j = 0 SB CQI j= 1 SB CQI j = 2 SB CQI j = 0 SB CQI j= 1 SB CQI j = 2 RI SB CQI j = 0 WB CQI SB CQI j= 1 SB CQI j = 2 WB CQI SB CQI j = 0 SB CQI j= 1 SB CQI j = 2 K = 2: SB reporting periodicity (J consecutive SB reports) with respect to WB reporting periodicity MRI = 2: RI reporting periodicity with respect to WB reporting periodicity NP = 2: Reporting Periodicity in TTIs …continue…
  34. 34. 34Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Multi-User DL MIMO  MAC scheduler decides on users „pairing“  Maximum 2 users on same resource due to 2TB restriction ∆CQI(2) ∆CQI(1) ∆CQI(3) ∆CQI(4) ∆CQI(N-3) ∆CQI(N-2) ∆CQI(N-1) ∆CQI(N) CQI(wideband) Frequency(subbands) mode 3-1 closed-loop SM PMI(wideband) ∆CQI(2) ∆CQI(1) ∆CQI(3) ∆CQI(4) ∆CQI(N-3) ∆CQI(N-2) ∆CQI(N-1) ∆CQI(N) CQI(wideband) CW 0 CW 1 #bits 2N 4 2N 4 2|1|4
  35. 35. 35Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn channel „experienced“ at user 1 channel „experienced“ at user 2 No joint processing at Rx, no cooperation! 4 2 4 2 desired interfering desiredinterfering Pre-coding matrix selection (UE1) maximize minimize 2 2 4 4 4 2 UE 1 UE 2 for UE 1 for UE 2 UE 1 UE 2 Multi-User DL MIMO
  36. 36. 36Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn UL-MIMO  UL-MIMO is not explicitly supported in LTE,  single antenna port in UL, no single- user(SU) SM in UL  demodulation UL reference signals (DRS) of different users overlap/interfere  DRS of different users are separated in TD according to „cyclic-shift“ of identical sequence (theoretical max. of 8 user, depending on delay- spread)  depends on eNB scheduler‘s flexibility and PHY support delay spread max 12 cyclic shift h1[t] h2[t] h3[t] h12[t] r*PUSCH(k) DRS demapperFFT x h1[t]+ h2[t]+…+ h12[t] „cyclic-shift“ zero IFFT
  37. 37. 37Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Source: 3GPP self evaluation results, 3GPP TSG-RAN chair, oct 2009 Spectral efficiency 3GPP self-evaluation results
  38. 38. 38Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn 0 2000000 4000000 6000000 8000000 10000000 12000000 14000000 -10 -5 0 5 10 15 20 SNR in dB 1 2 mimoOn 3 4 16QAM 1/2 EVA5 50 RB 2x2 SFBC LTE DL simulation results reported by the Top4 leading LTE vendors Throughput[Bits]
  39. 39. 39Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn LTE-Advanced: Concepts  Improved Spectrum Flexibility  Bandwidth up to 100MHz  Spectrum and carrier aggregation  MIMO  support SM in UL  Higher order MIMO in DL  Coordinated Multipoint Transmission from interference randomization to interference coordination  Multihop Relays  L1 repeaters to improve coverage  L3 relays for self-backhauling eNB 100 MHz 20 MHz 20 MHz eNB relay node UE
  40. 40. 40Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn LTE-Advanced advanced MIMO receiver structure SD-SIC for OFDMA 2 codewords used, each S/P-mapped onto 2 Tx antennas 1,kY 2,kY LMMSE / Soft IC LLR calc. Rate matching LLR calc. Decoder Decoder Signal construction Signal construction Channel estimate Channel estimate 3,kY 4,kY S/P S/P Rate matching Figure: NSN: R1-083732 / 2008-09-23
  41. 41. 41Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn End of Part 2 Thank you!!!

×