Noise investigation for Optical Tweezers

1,258 views

Published on

This presentation is dedicated to the noise problems faced in optical tweezers.

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,258
On SlideShare
0
From Embeds
0
Number of Embeds
180
Actions
Shares
0
Downloads
8
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Noise investigation for Optical Tweezers

  1. 1. Noise Investigation for Optical Tweezers<br />1<br />
  2. 2. 60Hz noise Investigation-next 5 slides<br />2<br />
  3. 3. 3<br />60 Hz noise identification<br />60Hz<br />#6<br />Data taken on may/18/2011<br />
  4. 4. 4<br />Identification cont…<br />60Hz<br />#6<br />4<br />Data taken on june/02/2011<br />
  5. 5. 5<br />Source identification and Solution<br /><ul><li> First source : AC power cables running close to the QPD signal wires
  6. 6. Second source: Power supply of on track was not grounded</li></ul>Solution<br /><ul><li> All the signal wires were rearranged and separated from AC wires
  7. 7. On track was powered by Ryobi lithium-battery</li></li></ul><li>6<br />Results<br />No 60 Hz noise<br />Data taken on june/30/2011<br />
  8. 8. 7<br />Results <br />No 60 Hz noise<br />Data taken on July/14/2011<br />
  9. 9. 120Hz Investigation Onwards<br />8<br />
  10. 10. Noisy DOG Vs ideal DOG<br />9<br />
  11. 11. Ideal Data Vs Noisy Data<br />10<br />
  12. 12. Test for resonant frequency of the setup- next 17 slides<br />11<br />Sample plane<br />Tweezers structure<br />
  13. 13. Tone generator<br />12<br />
  14. 14. Test-Results frequency Vs DOG-profile<br />13<br />At 0 Hz<br />#12<br />At 100 Hz<br />#10<br />At 105 Hz<br />#10<br />
  15. 15. Cont….<br />14<br />#11<br />At 110 Hz<br />#11.5<br />At 115 Hz<br />#12<br />At 120 Hz<br />Resonance HIT<br />
  16. 16. 15<br />Cont….<br />#12.5<br />At 125 Hz<br />#13<br />At 130 Hz<br />#13.5<br />At 135 Hz<br />
  17. 17. 16<br />Cont….<br />#14<br />At 140 Hz<br />#14<br />At 145 Hz<br />#15<br />At 150 Hz<br />
  18. 18. 17<br />Cont….<br />#16<br />At 160 Hz<br />#17<br />At 170 Hz<br />#18<br />At 180 Hz<br />Another hit<br />
  19. 19. 18<br />Cont….<br />#20<br />At 200 Hz<br />#24<br />At 225 Hz<br />#30<br />At 300 Hz<br />Another hit<br />
  20. 20. 19<br />Cont….<br />Beating<br />At 350Hz<br />Beating<br />At 400 Hz<br />Beating<br />At 450Hz<br />
  21. 21. 20<br />Cont….<br />Beating<br />At 500Hz<br />Beating<br />At 550Hz<br />Beating<br />At 600Hz<br />
  22. 22. 21<br />Cont….<br />Beating<br />At 650Hz<br />Beating<br />At 700Hz<br />Beating<br />At 750Hz<br />
  23. 23. 22<br />Cont….<br />Beating<br />At 800Hz<br />Beating<br />At 850Hz<br />Beating<br />At 900Hz<br />
  24. 24. 23<br />Cont….<br />Beating<br />At 950Hz<br />Beating<br />At 1000Hz<br />Beating<br />At 1100Hz<br />
  25. 25. 24<br />Last one..<br />Beating<br />At 2000Hz<br />
  26. 26. Power spectrum comparisonspeaker on optical table Vs chair<br />25<br />OT<br />chair<br />0Hz<br />
  27. 27. 26<br />Cont….<br />OT<br />chair<br />cc<br />120Hz<br />
  28. 28. 27<br />Cont…<br />OT<br />Chair<br />At 180 Hz<br />cc<br />
  29. 29. 28<br />Cont….<br />chair<br />OT<br />300Hz<br />
  30. 30. 29<br />Cont….lastone<br />chair<br />OT<br />600Hz<br />
  31. 31. Noise detection in the data<br />30<br />
  32. 32. 31<br />Data Analysis<br />
  33. 33. 32<br />
  34. 34. 33<br />
  35. 35. 34<br />
  36. 36. 35<br />
  37. 37. 36<br />Summary<br /><ul><li>Vibration transmissivity wise structure is most sensitive to 100 to 150Hz and more sensitive to the frequencies less than 400Hz.
  38. 38. Power coupling from frequencies higher than 150Hz wise 295Hz is the strongest candidate.
  39. 39. Airborne noise wise structure is most sensitive to frequencies less than 140Hz.
  40. 40. 120 Hz is the mechanical resonant frequency of the structure.
  41. 41. 180Hz and 295Hz are the secondary resonance.</li>

×