Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Triângulo

1,422 views

Published on

Published in: Education
  • Be the first to comment

Triângulo

  1. 1. TEOREMA DE PITÁGORAS A B C CATETO CATETO HIPOTENUSA 2 2 (CATETO) (CATETO)+ = 2 (HIPOTENUSA) 3 45 512 13 20 21 29
  2. 2. RAZÕES TRIGONOMÉTRICAS DE ÂNGULOS AGUDOS q =q CatetoOpuestoa sen Hipotenusa θ θ = CatetoAdyacentea cos Hipotenusa θ = θ Hipotenusa sec CatetoAdyacentea θ = θ Hipotenusa csc CatetoOpuestoa θ θ = θ CatetoAdyacentea cot CatetoOpuestoa θ θ = θ CatetoOpuestoa tan CatetoAdyacentea CATETO OPOSTO A θCATETO ADJACENTE A θ HIPOTENUSA θ SENO COSSENO TANGENTE COTANGENTE SECANTE COSSECANTE
  3. 3. 12 35 H 2 2 2 H 12 35= + TEOREMA DE PITÁGORAS H 1369= = 37 senθ = cosθ = tanθ = 12 37 35 37 12 35 cot θ = sec θ = csc θ = 35 12 37 35 37 12 EXEMPLO : EXEMPLO : Sabendo que θ é um ângulo agudo tal que senθ=2/3..... 23 θ θ
  4. 4. RAZÕES TRIGONOMÉTRICAS RECÍPROCAS PROPRIEDADES DAS RAZÕES TRIGOMOMÉTRICAS DE ÂNGULOS AGUDOS 1 sen csc θ = θ 1 cos sec θ = θ 1 tan cot θ = θ EXEMPLOS o 1 A) sen36 o csc 36= o 1 B) cos17 o sec17= sen csc 1θ θ = cos sec 1θ θ = tan cot 1θ θ = D)sen2 csc2θ θ 1=o o C)tan49 cot 49 1= o E)cos63 sec θ 1= o 63θ = F)tan2 cot 1φ θ = 2φ = θ
  5. 5. PROPRIEDADES DAS RAZÕES TRIGOMOMÉTRICAS DE ÂNGULOS AGUDOS RAZÕES TRIGONOMÉTRICAS DE ÂNGULOS COMPLEMENTARES ÀS RAZÕES TRIGONOMÉTRICAS SENO E COSSENO TANGENTE E COTANGENTE; SECANTE E COSSECANTE DENOMINAMOS :CO-RAZÕES TRIGONOMÉTRICAS PROPRIEDADE: “AS RAZÕES TRIGONOMÉTRICAS DE TODO ÂNGULO AGUDO SÃO RESPECTIVAMENTE IGUAIS ÀS CO-RAZÕES TRIGONOMÉTRICAS DE SEU ÂNGULO COMPLEMENTAR” θ φ senθ = cos φ cos θ = tanθ = senφ cotφ a b c cot θ = secθ = cscθ = tanφ cscφ sec φ
  6. 6. EXEMPLOS o A)sen25 = o B)tan43 = o C)sec60 = o cos65 o cot 47 o csc30 ............... ............... ............... o o O 25 65 90+ = o o O 43 47 90+ = o o O 60 30 90+ = o D)sen cos20θ = o O 20 90θ + = o 70θ = E)tan5 cotα = α o 5 90α + α = o 15α = F)sen 5 π  = ÷   cos θ 5 2 π π θ + = 2 5 π π θ = − 3 rad 10 π θ =
  7. 7. TRIÂNGULOS NOTÁVEIS 1 2 3 o 30 ( ) O 60 1 1 2 o 45 o 45 ( ) 3 4 5 o 37 o 53 ( ) o sen30 = 1 2 o tan60 = 3 o sec 45 = 2 o cot 37 = 4 3 o tan30 = 1 3 3 x 3 3 3 = o sen45 = 1 2 2 x 2 2 2 =
  8. 8. ) ) ( (o 30 o 37 o 45 θ 4 3 4 3 3 3 3 CALCULAR : cotθ 8 3 3 cot 4 θ =
  9. 9. RESOLUÇÃO DE TRIÂNGULOS RETÂNGULOS θ θ H Hsenθ Hcos θ L sec θ L tanθ L 5 o 62 o 5sen62 o 5cos62 8 β 8 tanβ 8secβ CASO1 – DADOS: HIPOTENUSA E ÂNGULO AGUDO θ CASO 2 – DADOS: CATETO ADJACENTE E ÂNGULO AGUDO θ
  10. 10. L θ L cot θ L csc θ k o 24 o k csc 24 o k cot 24 EXEMPLO α θ) ) m Calcular L e M termos de m α y θ; L CASO 3 – DADOS: CATETO OPOSTO E ÂNGULO AGUDO θ
  11. 11. SOLUÇÃO α θ m m tanαL L m tan m + α = cot θ L m tan+ α = mcot θ L mcot m tan= θ − α L = m(cot tan )θ − α NOTA: DESCOMPOSIÇÃO DE UM VETOR α F yF xF X Y xF Fcos= α yF Fsen= α
  12. 12. ÁREA DO TRIÂNGULO A B C a b c ab S senC 2 = bc S senA 2 = ac S senB 2 = EXEMPLO 5m 8m O 60 o(5)(8) S sen60 2 = (5)(8) 3 S ( ) 2 2 = 2 10 3m=
  13. 13. ÂNGULOS VERTICAIS Os ângulos verticais são ângulos agudos contidos em um plano vertical e formados por duas linhas imaginárias chamadas horizontal e visual α θ ÂNGULO DE ELEVAÇÃO ÂNGULO DE DEPRESSÃO HORIZONTAL VISUAL VISUAL ) )
  14. 14. UMa pessoa observa em um mesmo plano vertical dois ovnis voando a uma mesma altura com ângulos de elevação de 530 e 370 se a distância entre os ovnis é de 70m. A que altura estão os ovnis? EXEMPLO: SOLUÇÃO ) ) o 37 O 53 70 12k 12k ) O 53 9k ) o 37 16k + 9k +70 = 16k k = 10 H = 120 =H
  15. 15. ÂNGULOS HORIZONTAIS Os ângulos horizontais são ângulos agudos contidos em um plano horizontal, se determinam tomando como referência os pontos cardinais norte (N), sul (S), leste (L) e oeste (O). DIREÇÃO A direção de B em relação a A é E30N o N60E o A direção de C em relação a A é o S56 O S34O o o o CURSO O curso de Q em relação a P o 47 O curso de M em relação a P o 27 ao leste do sul al oeste del norte N S EO O 30 O 56 A B C EO S N P Q o 47 o 27 M ) ( ( )
  16. 16. ROSA NÁUTICA Gráfico que contém 32 direções notáveis, cada direção forma entre elas um ângulo cuja medida é 'o 1511 No gráfico adjunto só se mostran 16 direções notáveis, cada uma forma entre elas um ângulo cuja medida é 'o 3022 N S EO NNE ENE NNO ONO OSO SSO ESE SSE NENO SO SE
  17. 17. As outras 16 direções obtemos traçando as bissetrizes dos 16 ângulos que se mostram no gráfico anterior. E NE N NNE ENE NE41E E41NE NE41N N41NE NNO NO41N N41NO NOO41NO ONO NO41O O Quanto mede o ângulo entre as direções NE1/ 4N y NO1/ 4O ? Rpta. o 90
  18. 18. Um inseto parte de um ponto F e percorre 40 km na direção N530 O logo percorre 402 km na direção SO, finalmente percorre 60 km para o leste. A que distância se encontra o inseto de F? EXEMPLO: SOLUÇÃO N S EO o 53 ) o 45 o 45 40 40 2 60 x o 37 24 32 16 40 20 12 16 OBSERVE QUE O TRIÂNGULO DE COR VERMELHA É NOTÁVEL X = 20 F
  19. 19. EXEMPLO : Sabendo que: tan 8θ=24/7, calcule tan2θ SOLUÇÃO 8θ 24 7 25 4θ 25 24 tan4 25 7 θ = + 24 tan4 32 θ = 3 tan4 4 θ = 4θ 2θ 3 4 5 5 3 tan2 9 θ = 1 tan2 3 θ = (
  20. 20. Professor Antonio Carlos Carneiro Barroso Colégio Estadual Dinah Gonçalves Graduado em Ciências Naturais pela UFBA Pós graduado em Metodologia e Didática de ensino Superior Lecionando Matemática e Biologia http://ensinodematemtica.blogspot.com www.profantoniocarneiro.com Salvador-Ba

×