Semantic Data MarketsA Flexible Environment for Knowledge Management                  R. De Virgilio, G. Orsi, L. Tanca an...
Semantic Data Management:Overview  Problem:     store,     query, and     reason over  semantically annotated data.
Semantic Data Management:Overview  Problem:     store,     query, and     reason over  semantically annotated data.       ...
Semantic Data Management:Overview  Common limitations:    language-dependent frameworks,    opaque logical and physical or...
Semantic Data Management:Overview  Common limitations:     language-dependent frameworks,     opaque logical and physical ...
Nyaya:The kiosk            ΣO   ΣO : ontological constraints            ΣS   ΣS : storage constraints (mapping)           ...
Nyaya:The kiosk            ΣO   ΣO : ontological constraintsRDF         ΣS   ΣS : storage constraints (mapping)           ...
Nyaya:The kiosk            schema   ΣO   ΣO : ontological constraintsRDF                  ΣS   ΣS : storage constraints (m...
Nyaya:The kiosk            schema   ΣO   ΣO : ontological constraintsRDF                  ΣS   ΣS : storage constraints (m...
Nyaya:The kiosk            schema    ΣO   ΣO : ontological constraints            storage        ΣS : storage constraints ...
Nyaya:The kiosk            schema    ΣO   ΣO : ontological constraints            storage        ΣS : storage constraints ...
Nyaya:Example                     RDF          database         constraints
Nyaya:The semantic data market           ΣO           ΣS            D
Nyaya:The semantic data market           ΣO           ΣS            D
Nyaya:The semantic data market           ΣO     ΣO       ΣO       ΣO           ΣS     ΣS       ΣS   …   ΣS            D   ...
Nyaya:The semantic data market                   user-defined constraints           ΣO     ΣO            ΣO               ...
Nyaya:The semantic data market                                         Union of    front-end                       Conjunc...
Query ReformulationUse of FO-rewritability                          Q   O
Query ReformulationUse of FO-rewritability                                           I phase                          Q   ...
Query ReformulationUse of FO-rewritability                                             I phase                           Q...
Query ReformulationUse of FO-rewritability                                                 I phase                        ...
Query ReformulationUse of FO-rewritability                                                      I phase                   ...
Query ReformulationExample [Gottlob, Orsi and Pieris ICDE ‘11]      professor(X)  Y teaches(X,Y) ΣO      teaches(X,Y)  ...
Query ReformulationExample [Gottlob, Orsi and Pieris ICDE ‘11]      professor(X)  Y teaches(X,f(X)) ΣO      teaches(X,Y)...
Query ReformulationExample [Gottlob, Orsi and Pieris ICDE ‘11]                                                        t[1]...
Query ReformulationExample [Gottlob, Orsi and Pieris ICDE ‘11]                                                        t[1]...
Query ReformulationExample [Gottlob, Orsi and Pieris ICDE ‘11]                                                        t[1]...
Query ReformulationExample [Gottlob, Orsi and Pieris ICDE ‘11]                                                        t[1]...
Query ReformulationExample [Gottlob, Orsi and Pieris ICDE ‘11]                                                       t[1] ...
Query ReformulationExample [Gottlob, Orsi and Pieris ICDE ‘11]                                                           t...
Query ReformulationExample [Gottlob, Orsi and Pieris ICDE ‘11]                                                       t[1] ...
Query ReformulationExample [Gottlob, Orsi and Pieris ICDE ‘11]                                                            ...
Query ReformulationExample [Gottlob, Orsi and Pieris ICDE ‘11]                                                            ...
Query ReformulationExample [Gottlob, Orsi and Pieris ICDE ‘11]                                                            ...
ExperimentsQuerying  UOBM Tbox (Approximated)  Instance of 12.8 million triples
ExperimentsQuerying  UOBM Tbox (Approximated)  Instance of 12.8 million triples
ExperimentsLoading and Updates
ExperimentsLoading and Updates  If the language of ΣO is FO-rewritable     fact updates reduce to updates in a DBMS     pr...
ConclusionWhat should we do?  Identifying tractable classes of ontological constraints is crucial     current commercial s...
This is the endThank you                  The Nyaya Family        http://mais.dia.uniroma3.it/Nyaya
Upcoming SlideShare
Loading in …5
×

Nyaya: Semantic data markets: a flexible environment for knowledge management - CIKM 2011 and ICDE 2012 (Demonstration)

1,045 views

Published on

We present Nyaya , a flexible system for the management of Semantic-Web data which couples a general-purpose storage mechanism with efficient ontology reasoning and querying capabilities. Nyaya processes large Semantic-Web datasets,
expressed in a variety of formalisms, by transforming them into a collection of Semantic Data Kiosks. Each kiosk exposes the native meta-data in a uniform fashion using Datalog± , a very general rule-based language for the representation of ontological constraints. The kiosks form a Semantic Data Market where the data in each kiosk can be uniformly accessed using conjunctive queries and where users can specify user-defined constraints over the data. Nyaya is easily extensible and robust to updates of both data and meta-data in the kiosk and can readily adapt to different logical organization of the persistent storage. The approach has been experimented using well-known benchmarks, and compared to state-of-the-art research prototypes and commercial systems.

Published in: Technology, Education, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,045
On SlideShare
0
From Embeds
0
Number of Embeds
380
Actions
Shares
0
Downloads
7
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Nyaya: Semantic data markets: a flexible environment for knowledge management - CIKM 2011 and ICDE 2012 (Demonstration)

  1. 1. Semantic Data MarketsA Flexible Environment for Knowledge Management R. De Virgilio, G. Orsi, L. Tanca and R. Torlone CIKM 2011 – Glasgow (UK)
  2. 2. Semantic Data Management:Overview Problem: store, query, and reason over semantically annotated data.
  3. 3. Semantic Data Management:Overview Problem: store, query, and reason over semantically annotated data. AT SCALE
  4. 4. Semantic Data Management:Overview Common limitations: language-dependent frameworks, opaque logical and physical organization, tractable fragments are often ignored.
  5. 5. Semantic Data Management:Overview Common limitations: language-dependent frameworks, opaque logical and physical organization, tractable fragments are often ignored. Nyaya: an environment for semantic data management. [Cali’ et Al. PODS ‘09] uniform representation of semantic data with Datalog±, [Cali’ et Al. VLDB ‘10] flexible and transparent storage policy, [Atzeni et Al. VLDBJ ‘08] [Gottlob et Al. ICDE ‘11] efficient reasoning and querying. [Orsi et Al. VLDB ‘11]
  6. 6. Nyaya:The kiosk ΣO ΣO : ontological constraints ΣS ΣS : storage constraints (mapping) D D : database
  7. 7. Nyaya:The kiosk ΣO ΣO : ontological constraintsRDF ΣS ΣS : storage constraints (mapping) D D : database
  8. 8. Nyaya:The kiosk schema ΣO ΣO : ontological constraintsRDF ΣS ΣS : storage constraints (mapping) data D D : database
  9. 9. Nyaya:The kiosk schema ΣO ΣO : ontological constraintsRDF ΣS ΣS : storage constraints (mapping) data D D : database
  10. 10. Nyaya:The kiosk schema ΣO ΣO : ontological constraints storage ΣS : storage constraints (mapping)RDF meta ΣS model data D D : database
  11. 11. Nyaya:The kiosk schema ΣO ΣO : ontological constraints storage ΣS : storage constraints (mapping)RDF meta ΣS model data D D : database
  12. 12. Nyaya:Example RDF database constraints
  13. 13. Nyaya:The semantic data market ΣO ΣS D
  14. 14. Nyaya:The semantic data market ΣO ΣS D
  15. 15. Nyaya:The semantic data market ΣO ΣO ΣO ΣO ΣS ΣS ΣS … ΣS D D D D
  16. 16. Nyaya:The semantic data market user-defined constraints ΣO ΣO ΣO ΣO ΣS ΣS ΣS … ΣS D D D D
  17. 17. Nyaya:The semantic data market Union of front-end Conjunctive Queries application user-defined constraints ΣO ΣO ΣO ΣO ΣS ΣS ΣS … ΣS D D D D
  18. 18. Query ReformulationUse of FO-rewritability Q O
  19. 19. Query ReformulationUse of FO-rewritability I phase Q O compilation (ΣO) QO
  20. 20. Query ReformulationUse of FO-rewritability I phase Q O compilation (ΣO) QO II phase compilation QS (ΣS) S
  21. 21. Query ReformulationUse of FO-rewritability I phase Q O compilation (ΣO) QO II phase compilation Q* QS (ΣS) SQL S translation
  22. 22. Query ReformulationUse of FO-rewritability I phase Q O compilation (ΣO) QO II phase compilation Q* QS (ΣS) SQL S translation D evaluation
  23. 23. Query ReformulationExample [Gottlob, Orsi and Pieris ICDE ‘11] professor(X)  Y teaches(X,Y) ΣO teaches(X,Y)  student(Y) Q q(A)  teaches(A,B), student(B)
  24. 24. Query ReformulationExample [Gottlob, Orsi and Pieris ICDE ‘11] professor(X)  Y teaches(X,f(X)) ΣO teaches(X,Y)  student(Y) Q q(A)  teaches(A,B), student(B)
  25. 25. Query ReformulationExample [Gottlob, Orsi and Pieris ICDE ‘11] t[1] professor(X)  Y teaches(X,f(X)) ΣO teaches(X,Y)  student(Y) p[1] f s[1] Q q(A)  teaches(A,B), student(B) t[2]
  26. 26. Query ReformulationExample [Gottlob, Orsi and Pieris ICDE ‘11] t[1] professor(X)  Y teaches(X,f(X)) ΣO teaches(X,Y)  student(Y) p[1] f s[1] Q q(A)  teaches(A,B), student(B) t[2]
  27. 27. Query ReformulationExample [Gottlob, Orsi and Pieris ICDE ‘11] t[1] professor(X)  Y teaches(X,f(X)) ΣO teaches(X,Y)  student(Y) p[1] f s[1] Q q(A)  teaches(A,B) t[2]
  28. 28. Query ReformulationExample [Gottlob, Orsi and Pieris ICDE ‘11] t[1] professor(X)  Y teaches(X,f(X)) ΣO teaches(X,Y)  student(Y) p[1] f s[1] Q q(A)  teaches(A,B) t[2]
  29. 29. Query ReformulationExample [Gottlob, Orsi and Pieris ICDE ‘11] t[1] ΣO professor(X)  Y teaches(X,f(X)) p[1] f s[1] Q q(A)  teaches(A,B) t[2]
  30. 30. Query ReformulationExample [Gottlob, Orsi and Pieris ICDE ‘11] t[1] ΣO professor(X)  Y teaches(X,f(X)) p[1] f s[1] Q q(A)  teaches(X,Y) { XA, Bf(X) } t[2]
  31. 31. Query ReformulationExample [Gottlob, Orsi and Pieris ICDE ‘11] t[1] ΣO professor(X)  Y teaches(X,f(X)) p[1] f s[1] q(A)  teaches(A,B) Q q(A)  professor(A) t[2]
  32. 32. Query ReformulationExample [Gottlob, Orsi and Pieris ICDE ‘11] t[1] ΣO professor(X)  Y teaches(X,f(X)) p[1] f s[1] q(A)  teaches(A,B) QΣ q(A)  professor(A) t[2] professor(X)  i-class(Z0,X,Z1), class(Z1,’professor’) ΣS teaches(X,Y)  i-objectproperty(Z0,Z1,Z2,Z3), i-class(Z1,X,Z0), i-class(Z2,Y,Z7), objectproperty(Z3,’teaches’,Z4,Z5)
  33. 33. Query ReformulationExample [Gottlob, Orsi and Pieris ICDE ‘11] t[1] ΣO professor(X)  Y teaches(X,f(X)) p[1] f s[1] q(A)  teaches(A,B) QΣ q(A)  professor(A) t[2] professor(X)  i-class(Z0,X,Z1), class(Z1,’professor’) ΣS teaches(X,Y)  i-objectproperty(Z0,Z1,Z2,Z3), i-class(Z1,X,Z0), i-class(Z2,Y,Z7), objectproperty(Z3,’teaches’,Z4,Z5) q(A)  i-objectproperty(Z0,Z1,Z2,Z3), i-class(Z1,A,Z0), QS i-class(Z2,B,Z7), objectproperty(Z3,’teaches’,Z4,Z5) q(A)  i-class(Z0,A,Z1), class(Z1,’professor’)
  34. 34. Query ReformulationExample [Gottlob, Orsi and Pieris ICDE ‘11] t[1] ΣO professor(X)  Y teaches(X,f(X)) p[1] f s[1] q(A)  teaches(A,B) QΣ q(A)  professor(A) t[2] professor(X)  i-class(Z0,X,Z1), class(Z1,’professor’) ΣS teaches(X,Y)  i-objectproperty(Z0,Z1,Z2,Z3), i-class(Z1,X,Z0), i-class(Z2,Y,Z7), objectproperty(Z3,’teaches’,Z4,Z5) q(A)  i-objectproperty(Z0,Z1,Z2,#(teaches)), i-class(Z1,A,Z0) QS q(A)  i-class(Z0,A,#(professor))
  35. 35. ExperimentsQuerying UOBM Tbox (Approximated) Instance of 12.8 million triples
  36. 36. ExperimentsQuerying UOBM Tbox (Approximated) Instance of 12.8 million triples
  37. 37. ExperimentsLoading and Updates
  38. 38. ExperimentsLoading and Updates If the language of ΣO is FO-rewritable fact updates reduce to updates in a DBMS predicate updates reduce to re-compute the rewriting
  39. 39. ConclusionWhat should we do? Identifying tractable classes of ontological constraints is crucial current commercial systems do not do that Intensional query reformulation delivers very good query performance Ontology-based data access (ODBA) seamlessly extends traditional database technology
  40. 40. This is the endThank you The Nyaya Family http://mais.dia.uniroma3.it/Nyaya

×