A Non-Intrusive Movie Recommendation System

489 views

Published on

Tania Farinella , Sonia Bergamaschi, Laura Po, A non-intrusive Movie Recommendation System. In: Meersman, R.; Panetto, H.; Dillon, T.; Rinderle-Ma, S.; Dadam, P.; Zhou, X.; Pearson, S.; Ferscha, A.; Bergamaschi, S.; Cruz, I.F. (Eds.). On the Move to Meaningful Internet Systems: OTM 2012. Roma, 10-14 September 2012, vol. 978-3-642-33614-0, p. 736-751, Heidelberg:Springer, ISBN: 9783642336140

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
489
On SlideShare
0
From Embeds
0
Number of Embeds
6
Actions
Shares
0
Downloads
7
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

A Non-Intrusive Movie Recommendation System

  1. 1. The 11th International Conference on Ontologies, DataBases, and Applications of Semantics (ODBASE 2012) 11-12 Sept 2012, Roma, Italy A Non-intrusive Movie Recommendation System Tania Farinella 1 , Sonia Bergamaschi 2 , and Laura Po 2 1 2 vfree.tv GmbH, München, Germany Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Italy
  2. 2.    Recommendation systems
  3. 3.   collaborative filtering systems Content-based recommendation systems
  4. 4.      
  5. 5.   system  plot-based recommendation
  6. 6. movie selected by the user Local database 
  7. 7.   IMDB Movie Collection TMDB Film Collection  Cast&Crew Movie Person IMDB Actor Collection
  8. 8.    keyword1 keyword2 … plot a plot b wb,2 plot c The weight of keyword 2 according to plot b
  9. 9.    
  10. 10.    
  11. 11.  
  12. 12.  
  13. 13.    
  14. 14.   
  15. 15.  
  16. 16.    
  17. 17.        
  18. 18.    

×