Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Model For The Prediction Of Motion Sickness Incidence, Peripheral Hcii Presentation

2,574 views

Published on

Matsangas & McCauley (2005) - Model for the Prediction of Motion Sickness Incidence: revised for peripheral vision - HCII

  • Be the first to comment

  • Be the first to like this

Model For The Prediction Of Motion Sickness Incidence, Peripheral Hcii Presentation

  1. 1. A Linear Visual-Vestibular Physiological Model for the Prediction of Motion Sickness Incidence: Revised for Motion Detected by Peripheral Vision By Lt P. Matsagas, M.Sc., Hellenic Navy [email_address] M.E. McCauley, Ph.D., Naval Postgraduate School [email_address] HCI International 2005
  2. 2. Motion Sickness <ul><li>Motion sickness is a general term that describes the discomfort and associated emesis (vomiting) induced by real or apparent motion. </li></ul><ul><li>Motion sickness effects are evident in numerous provocative motion environments, such as ships, aircraft, automobiles, virtual environments and large computer screens. </li></ul>
  3. 3. Cause of motion sickness <ul><li>Neural mismatch theory </li></ul>Current sensory input Neural store Vestibular system Vision Proprioception Error signal
  4. 4. Effects on performance <ul><li>The consequences on human performance and operational efficiency are: </li></ul><ul><ul><li>Ataxia ( lack of muscular coordination ) </li></ul></ul><ul><ul><li>Decreased spontaneity </li></ul></ul><ul><ul><li>Carelessness </li></ul></ul><ul><ul><li>Incoordination </li></ul></ul><ul><ul><li>Reductions in subject motivation </li></ul></ul><ul><ul><li>Mood changes </li></ul></ul><ul><ul><li>Sleepiness, drowsiness (through sopite syndrome) </li></ul></ul><ul><ul><li>Negative acceptance of the technological system involved </li></ul></ul>
  5. 5. Motion Sickness Incidence (MSI) <ul><li>A historically common index of motion sickness severity is the Motion Sickness Incidence (MSI), which is the percentage of people who vomit when exposed to a nauseogenic environment. </li></ul>
  6. 6. HFR model (1974) Model Characteristics Vertical Acceleration Only true motion MSI: % of people who vomit Two-hour nauseogenic period Nauseogenic frequency range 0.05 – 0.6 [Hz] Central nauseogenic frequency 0.167 [Hz]
  7. 7. Proposed model <ul><li>Conceptually based on existing theories </li></ul><ul><li>Combined with observer theory concepts </li></ul><ul><li>MSI estimation based on: </li></ul><ul><ul><li>Gravity estimation error </li></ul></ul><ul><ul><li>Residual optical flow </li></ul></ul><ul><li>Model input parameters </li></ul><ul><ul><li>True motion characteristics (Vertical acceleration frequency and amplitude) detected by the vestibular system </li></ul></ul><ul><ul><li>Apparent motion characteristics (Vertical acceleration frequency and amplitude) detected by peripheral vision </li></ul></ul>
  8. 8. Model Overview Peripheral Vision System Visual World Motion Vestibular System Head externally induced motion Error Estimation Subsystem VOR Interface Visual system Visual target tracking Motion parameters Extraction Adaptation Subsystem Gravity Error Residual Optical Flow VOR ROF ADAPT Dg ,
  9. 9. Model in detail
  10. 10. Predicted MSI True Motion Settings Proposed Model Characteristics Vertical Acceleration Only true motion MSI: % of people who vomit Two-hour nauseogenic period Nauseogenic frequency range 0.05 – 0.6 [Hz] Central nauseogenic frequency 0.17 [Hz]
  11. 11. Model Validation True Motion Settings Proposed model HFR model MSI Comparison between Proposed and HFR models
  12. 12. MSI Comparison Does Peripheral Vision make a difference? Predicted MSI without Peripheral Vision Predicted MSI with Peripheral Vision MSI Comparison between Proposed (no Peripheral Vision) and HFR models MSI Comparison between Proposed (with Peripheral Vision) and HFR models
  13. 13. Predicted MSI Apparent Motion Settings Proposed Model Characteristics Vertical Acceleration Only Apparent Motion MSI: % of people who vomit Two-hour nauseogenic period Nauseogenic frequency range 0.05 – 0.6 [Hz] Central nauseogenic frequency 0.157 [Hz]
  14. 14. Model significance <ul><li>Parametric </li></ul><ul><li>Easily extended to various combinations of sensory cues </li></ul><ul><li>Validated but not “tuned” </li></ul><ul><li>Precise </li></ul><ul><li>Etiologic </li></ul><ul><li>Linear and time invariant </li></ul>
  15. 15. Why is the model useful? <ul><li>Current state </li></ul><ul><ul><li>True and apparent motion detection </li></ul></ul><ul><ul><li>Seated subject </li></ul></ul><ul><ul><li>No voluntary motions </li></ul></ul><ul><li>Future state </li></ul><ul><ul><li>Proprioception </li></ul></ul><ul><ul><li>Refinement of Neural Store model </li></ul></ul><ul><ul><li>Parametric input of other human physiology parameters </li></ul></ul>
  16. 16. Future Research <ul><li>Include motion in 6 degrees of freedom </li></ul><ul><li>Implementation of “all” physiological systems </li></ul><ul><li>Central Nervous System (CNS) non-linear characteristics </li></ul>
  17. 17. <ul><li>Questions? </li></ul>
  18. 18. Adaptation mechanism detail + + Exponential Increase Exponential Decrease + + Perceived Linear Acceleration Perceived Gravity Adaptation signal Neural Store Σ
  19. 19. Future Research Current State Future State Inputs <ul><li>True motion </li></ul><ul><li>Visually detected motion </li></ul><ul><li>True motion </li></ul><ul><li>Visually detected motion </li></ul>Human systems involved <ul><li>Vestibular </li></ul><ul><li>Central Vision </li></ul><ul><li>Peripheral Vision </li></ul><ul><li>Vestibular </li></ul><ul><li>Central Vision </li></ul><ul><li>Peripheral Vision </li></ul><ul><li>Proprioception </li></ul>Neural Store <ul><li>One average motion </li></ul><ul><li>Multiple motion characteristics </li></ul>Cue errors contributing to MSI <ul><li>Gravity vector estimation </li></ul><ul><li>Retinal Slip </li></ul><ul><li>Gravity vector estimation </li></ul><ul><li>Retinal Slip </li></ul><ul><li>Difference between true motion and vection </li></ul>
  20. 20. Current efforts Modeling of Inputs <ul><li>True motion </li></ul><ul><li>Visually detected motion </li></ul>Human systems involved <ul><li>Vestibular </li></ul><ul><li>Central Vision </li></ul><ul><li>Peripheral Vision </li></ul><ul><li>Proprioception </li></ul>Neural Store <ul><li>Multiple motion characteristics </li></ul>Cue errors contributing to MSI <ul><li>Gravity vector estimation </li></ul><ul><li>Retinal Slip </li></ul><ul><li>Difference between true motion and vection </li></ul>

×