1017 Proposal

568 views

Published on

Published in: Technology, Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
568
On SlideShare
0
From Embeds
0
Number of Embeds
27
Actions
Shares
0
Downloads
6
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • 主要是從電子病歷中 , 萃取出我想要的資訊 , 包括從 free-text 的資料或者是實驗 Numeric 的數據 , 藉此來評估醫療品質
  • 1017 Proposal

    1. 1. Developing an Automated Evaluation System for Quality of Care by Concept Expansion enhancing MedLEE Present by Chen-Wei Yang 建立自動化醫療品質評估系統 : 利用搜尋概念延伸方法強化 MedLEE
    2. 2. Motivation <ul><li>Goal : 分析醫療過程面,進而評估該醫院之醫療品質 </li></ul><ul><li>病歷電子化,使得自動化的系統有存在的必要性 </li></ul><ul><li>指標疾病: AMI( 急性心肌梗塞 ) </li></ul>
    3. 3. Abstract <ul><li>本系統主要透過 MedLEE (NLP tool) 用來做文件萃取分析 ( 包括醫學名詞的標記、負面句判斷 ) ,再加上模糊字串比對、概念關鍵字延伸搜尋等技術,在病歷資料庫中,判斷出患有 AMI 之病人,在住院期間,是否有符合處置 AMI 的指標。量化該醫院在醫療過程面中的品質,進而探討之。 </li></ul>
    4. 4. Measures <ul><li>黃金時間內,再灌流率的比例 (M3) </li></ul><ul><li>在住院期間,心血管及非心血管併發症的比例 (M4) </li></ul><ul><li>無禁忌症之病人在出院時,有給予 ACE-I, aspirin, beat-blocker, statin 之比例 (M5,6,7,8) </li></ul><ul><li>住院其間,低密度膽固醇量測比例 (M9, 10) </li></ul>
    5. 5. System Framework DISCHARGE Free-text & digital value { Course, Present Illness, Discharge, Conclusion of ECHO} LAB Input Output How many patients care in the hospital satisfy the measure? Table : Medicine Complication Procedure UMLS thesaurus <ul><li>Measure3: </li></ul><ul><li>Reperfusion Check </li></ul><ul><li>Concept Search </li></ul><ul><li>Certainty Decide </li></ul><ul><li>Measure4: </li></ul><ul><li>Search Complication </li></ul><ul><li>Concept Search </li></ul><ul><li>Statics frequency </li></ul><ul><li>Measure5,6,7,8: </li></ul><ul><li>Medicine Search </li></ul><ul><li>Concept Search </li></ul><ul><li>Edit Distance Comparison </li></ul><ul><li>Integrate Lab data to decide Contrain. </li></ul><ul><li>Measure9,10: </li></ul><ul><li>LDL-C check </li></ul><ul><li>Get Value from many fields </li></ul><ul><li>Merge and statistic </li></ul>MedLEE parser
    6. 6. Methodology <ul><li>Problem: certainty(negation)/concept query feature not enough </li></ul><ul><li>In data, the reason without reperfusion : </li></ul><ul><li>Because of contran. or other reasons </li></ul><ul><li>Totally no mention </li></ul>
    7. 7. Methodology(1)-certainty(negation) <ul><li>Ex. No further thrombolytic treatment was given because of her advanced age and unwillingness. </li></ul><ul><li>Ex. (Her renal function improved gradually.) However, cardiac cath was still not favor. </li></ul><ul><li>Failed identified : Neither thrombolytic nor Primary PTCA was performed. </li></ul><ul><li>The output of MedLEE + proposed rules </li></ul>
    8. 8. Methodology(2)- concept query features not enough <ul><li>Query Expansion on concept-based at training set </li></ul><ul><li>The expansion feature decided by experts were meaningful. </li></ul><ul><li>Reweight these features to find the high score </li></ul><ul><li>Ex. Emergent cardiac cath showed CAD , 3 v d + LM , distal LM 90% stenosis , LAD/LCX diffuse narrowing, RCA proximal 80% stenosis with PLA total occlusion (PLA was the IRA). </li></ul>
    9. 9. certainty DISCHARGE(Training with reperfusion 230/281) Reperfusion Check Concept Search Edit Distance Comparison UMLS lexicon * Terms : { PTCA , t-PA , thrombolytic therapy , cardiac cath., POBAS} Build Feature set DISCHARGE(Testing) Reperfusion Check Concept Search Reweight <ul><li>Term feature table: </li></ul><ul><li>PTCA +C2 + C7 </li></ul><ul><li>Cardiac cath. + C1 + C3 </li></ul><ul><li>… . </li></ul>High certainty --- Done Moderate certainty or no Certainty Decide threshold Undo MedLEE parser MedLEE parser
    10. 10. Result of training set ASPIRIN System Found actual Given Non-given -1 2 / 57 1 209 / 214 0 4 / 10 total 215 / 281 Beta-blocker System Found actual Given Non-given -1 10 / 102 1 128 / 130 0 4 / 49 total 142 / 281 LDL-C (2) System Found actual Given Non-given -1 15 / 48 0 14 / 75 1 144 / 158 total 175 (173) Statins 2 System Found actual Given Non-given -1 1 / 48 47 / 48 1 64 /74 10 /74 0 4/ 159 155 /159 total 69
    11. 11. Contribution <ul><li>在其他領域,依舊能提供僅次於第一資訊的第二資訊。輔助在判斷 certainty 時的相關程度。 </li></ul><ul><li>加強 MedLEE 在負面子句的判斷,並提供 MedLEE 在未定義的 term 及 misspelling 上,以編輯距離的模糊比對的功能來做標記。提供醫護人員更易閱讀解析病歷。 </li></ul><ul><li>使醫療品質在過程面上得以自動化的做有效的評估、量化 </li></ul>
    12. 12. Future Work <ul><li>Medicine Search : Integrate Lab data to decide Contraindication </li></ul><ul><li>Reperfusion Check </li></ul><ul><li>Experiment of Testing set </li></ul>

    ×