Nat, List and Option Monoids - from scratch - Combining and Folding - an example

Philip Schwarz
Philip SchwarzSoftware development is what I am passionate about
β€’β€’
@philip_schwarz
slides by https://www.slideshare.net/pjschwarz
Nat, List and Option Monoids
from scratch
Combining and Folding
an example
enum Nat:
case Zero
case Succ(n: Nat)
𝐝𝐚𝐭𝐚 𝑡𝒂𝒕 = 𝒁𝒆𝒓𝒐 | 𝑺𝒖𝒄𝒄 𝑡𝒂𝒕
+ ∷ 𝑡𝒂𝒕 β†’ 𝑡𝒂𝒕 β†’ 𝑡𝒂𝒕
π‘š + 𝒁𝒆𝒓𝒐 = π‘š
π‘š + 𝑺𝒖𝒄𝒄 𝑛 = 𝑺𝒖𝒄𝒄 π‘š + 𝑛
(Γ—) ∷ 𝑡𝒂𝒕 β†’ 𝑡𝒂𝒕 β†’ 𝑡𝒂𝒕
π‘š Γ— 𝒁𝒆𝒓𝒐 = 𝒁𝒆𝒓𝒐
π‘š Γ— 𝑺𝒖𝒄𝒄 𝑛 = π‘š Γ— 𝑛 + π‘š extension (m: Nat)
def +(n: Nat): Nat = n match
case Zero => m
case Succ(n) => Succ(m + n)
def *(n: Nat): Nat = n match
case Zero => Zero
case Succ(n) => m * n + m
assert( zero + one == one )
assert( one + zero == one )
assert( one + two == three )
assert( one + two + three == six )
val zero = Zero
val one = Succ(zero)
val two = Succ(one)
val three = Succ(two)
val four = Succ(three)
val five = Succ(four)
val six = Succ(five)
assert( two * one == two )
assert( one * two == two )
assert( two * three == six )
assert( one * two * three == six )
trait Semigroup[A]:
def combine(x: A, y: A): A
object Semigroup:
extension [A](lhs: A)(using m: Semigroup[A])
def ⨁(rhs: A): A = m.combine(lhs,rhs)
given Monoid[Nat] with
def unit: Nat = Zero
def combine(x: Nat, y: Nat): Nat = x + y
trait Monoid[A] extends Semigroup[A]:
def unit: A
assert( summon[Monoid[Nat]].combine(two,three) == five )
assert( (two ⨁ three) == five )
assert( (one ⨁ two ⨁ three) == six )
val oneTwo = Cons(one,Cons(two,Nil))
val threeFour = Cons(three,Cons(four,Nil))
assert(append(oneTwo,threeFour) == Cons(one,Cons(two,Cons(three,Cons(four,Nil)))))
assert(oneTwo ++ threeFour == Cons(one,Cons(two,Cons(three,Cons(four,Nil)))))
enum List[+A]:
case Cons(head: A, tail: List[A])
case Nil
𝒅𝒂𝒕𝒂 π‘³π’Šπ’”π’• 𝛼 = π‘΅π’Šπ’ | π‘ͺ𝒐𝒏𝒔 𝛼 (π‘³π’Šπ’”π’• 𝛼)
π‘ͺ𝒐𝒏𝒔 1 (π‘ͺ𝒐𝒏𝒔 2 (π‘ͺ𝒐𝒏𝒔 3 π‘΅π’Šπ’ ))
object List:
def append[A](lhs: List[A], rhs: List[A]): List[A] = lhs match
case Nil => rhs
case Cons(a, rest) => Cons(a,append(rest,rhs))
extension [A](lhs: List[A])
def ++(rhs: List[A]): List[A] = append(lhs,rhs)
assert(List(one,two,three) == Cons(one,Cons(two,Cons(three,Nil))))
assert(List(one,two) ++ List(three, four) ++ Nil == List(one,two,three,four))
given ListMonoid[A]: Monoid[List[A]] with
def unit: List[A] = Nil
def combine(lhs: List[A], rhs: List[A]): List[A] = lhs ++ rhs
assert(summon[Monoid[List[Nat]]].combine(List(one,two),List(three, four)) == List(one,two,three,four))
assert((List(one,two) ⨁ List(three, four)) == List(one,two,three,four))
object List:
def apply[A](as: A*): List[A] = as match
case Seq() => Nil
case _ => Cons(as.head, List(as.tail*))
def append[A](lhs: List[A], rhs: List[A]): List[A] = lhs match
case Nil => rhs
case Cons(a, rest) => Cons(a,append(rest,rhs))
extension [A](lhs: List[A])
def ++(rhs: List[A]): List[A] = append(lhs,rhs)
object List:
def apply[A](as: A*): List[A] = as match
case Seq() => Nil
case _ => Cons(as.head, List(as.tail*))
def nil[A]: List[A] = Nil
def append[A](lhs: List[A], rhs: List[A]): List[A] = lhs match
case Nil => rhs
case Cons(a, rest) => Cons(a,append(rest,rhs))
extension [A](lhs: List[A])
def ++(rhs: List[A]): List[A] = append(lhs,rhs)
def fold[A](as: List[A])(using ma: Monoid[A]): A = as match
case Nil => ma.unit
case Cons(a,rest) => ma.combine(a,fold(rest))
assert(fold(List(one,two,three,four)) == one + two + three + four)
assert(fold(nil[Nat]) == zero)
assert(fold(List(List(one,two),Nil,List(three, four),List(five,six)))
== List(one,two,three,four,five,six))
object List:
def apply[A](as: A*): List[A] = as match
case Seq() => Nil
case _ => Cons(as.head, List(as.tail*))
def nil[A]: List[A] = Nil
def append[A](lhs: List[A], rhs: List[A]): List[A] = lhs match
case Nil => rhs
case Cons(a, rest) => Cons(a,append(rest,rhs))
extension [A](lhs: List[A])
def ++(rhs: List[A]): List[A] = append(lhs,rhs)
def fold[A](as: List[A])(using ma: Monoid[A]): A =
foldRight(as, ma.unit, (a,b) => ma.combine(a,b))
def foldRight[A,B](as: List[A], b: B, f: (A, B) => B): B = as match
case Nil => b
case Cons(a,rest) => f(a,foldRight(rest,b,f))
assert(fold(List(one,two,three,four)) == one + two + three + four)
assert(fold(nil[Nat]) == zero)
assert(fold(List(List(one,two),Nil,List(three, four),List(five,six)))
== List(one,two,three,four,five,six))
Same as the previous slide,
except that here we define
fold in terms of foldRight.
@philip_schwarz
val natMultMonoid = new Monoid[Nat]:
def unit: Nat = Succ(Zero)
def combine(x: Nat, y: Nat): Nat = x * y
assert(fold(List(one,two,three,four))(using natMultMonoid) == one * two * three * four)
assert(fold(nil[Nat])(using natMultMonoid) == one)
given OptionMonoid[A:Semigroup]: Monoid[Option[A]] with
def unit: Option[A] = None
def combine(ox: Option[A], oy: Option[A]): Option[A] = (ox,oy) match
case (None,_) => oy
case (_,None) => ox
case (Some(x),Some(y)) => Some(x ⨁ y)
enum Option[+A]:
case None
case Some(value:A)
object Option:
def none[A]: Option[A] = None
def some[A](a:A): Option[A] = Some(a)
assert((some(two) ⨁ None) == Some(two))
assert((none[Nat] ⨁ Some(two)) == Some(two))
assert((some(two) ⨁ Some(three)) == Some(five))
assert((none[Nat] ⨁ None) == None)
assert(summon[Monoid[Option[Nat]]].combine(Some(two),Some(three)) == Some(five))
assert(summon[Monoid[Option[Nat]]].combine(Some(two),None) == Some(two))
assert(summon[Monoid[Option[Nat]]].combine(none[Nat],Some(two)) == Some(two))
assert(summon[Monoid[Option[Nat]]].combine(none[Nat],None) == None)
𝒅𝒂𝒕𝒂 π‘΄π’‚π’šπ’ƒπ’† 𝛼 = π‘΅π’π’•π’‰π’Šπ’π’ˆ | 𝑱𝒖𝒔𝒕 𝛼
assert(fold(List(Some(two),None,Some(three))) == Some(five))
assert(fold(nil[Option[Nat]]) == None)
assert((List(Some(one),None,Some(two)) ++ List(Some(three),None,Some(four)))
== List(Some(one),None,Some(two),Some(three),None,Some(four)))
assert(summon[Monoid[List[Option[Nat]]]].combine(List(Some(one),None,Some(two)),List(Some(three),None,Some(four)))
== List(Some(one),None,Some(two),Some(three),None,Some(four)))
assert((List(Some(one),None,Some(two)) ⨁ List(Some(three),None,Some(four)))
== List(Some(one),None,Some(two),Some(three),None,Some(four)))
assert(fold(List(Some(one),None,Some(two)) ⨁ List(Some(three),None,Some(four)))
== Some(one + two + three + four))
assert(
fold(
fold(
List(List(Some(one), None, Some(two)),
List(Some(three), None, Some(four)),
List(Some(five), None, Some(six)))
)
)
== Some(one + two + three + four + five + six))
assert((some(List(one,two)) ⨁ None ⨁ Some(List(three,four)))
== Some(List(one,two,three,four)))
That’s all.
I hope you found it useful.
@philip_schwarz
1 of 12

Recommended

Scala Left Fold Parallelisation - Three Approaches by
Scala Left Fold Parallelisation- Three ApproachesScala Left Fold Parallelisation- Three Approaches
Scala Left Fold Parallelisation - Three ApproachesPhilip Schwarz
41 viewsβ€’44 slides
Tagless Final Encoding - Algebras and Interpreters and also Programs by
Tagless Final Encoding - Algebras and Interpreters and also ProgramsTagless Final Encoding - Algebras and Interpreters and also Programs
Tagless Final Encoding - Algebras and Interpreters and also ProgramsPhilip Schwarz
45 viewsβ€’16 slides
Fusing Transformations of Strict Scala Collections with Views by
Fusing Transformations of Strict Scala Collections with ViewsFusing Transformations of Strict Scala Collections with Views
Fusing Transformations of Strict Scala Collections with ViewsPhilip Schwarz
20 viewsβ€’28 slides
A sighting of sequence function in Practical FP in Scala by
A sighting of sequence function in Practical FP in ScalaA sighting of sequence function in Practical FP in Scala
A sighting of sequence function in Practical FP in ScalaPhilip Schwarz
28 viewsβ€’4 slides
N-Queens Combinatorial Puzzle meets Cats by
N-Queens Combinatorial Puzzle meets CatsN-Queens Combinatorial Puzzle meets Cats
N-Queens Combinatorial Puzzle meets CatsPhilip Schwarz
33 viewsβ€’386 slides
Kleisli composition, flatMap, join, map, unit - implementation and interrelat... by
Kleisli composition, flatMap, join, map, unit - implementation and interrelat...Kleisli composition, flatMap, join, map, unit - implementation and interrelat...
Kleisli composition, flatMap, join, map, unit - implementation and interrelat...Philip Schwarz
12 viewsβ€’16 slides

More Related Content

More from Philip Schwarz

Sum and Product Types - The Fruit Salad & Fruit Snack Example - From F# to Ha... by
Sum and Product Types -The Fruit Salad & Fruit Snack Example - From F# to Ha...Sum and Product Types -The Fruit Salad & Fruit Snack Example - From F# to Ha...
Sum and Product Types - The Fruit Salad & Fruit Snack Example - From F# to Ha...Philip Schwarz
827 viewsβ€’20 slides
Algebraic Data Types for Data Oriented Programming - From Haskell and Scala t... by
Algebraic Data Types forData Oriented Programming - From Haskell and Scala t...Algebraic Data Types forData Oriented Programming - From Haskell and Scala t...
Algebraic Data Types for Data Oriented Programming - From Haskell and Scala t...Philip Schwarz
1.2K viewsβ€’46 slides
Jordan Peterson - The pursuit of meaning and related ethical axioms by
Jordan Peterson - The pursuit of meaning and related ethical axiomsJordan Peterson - The pursuit of meaning and related ethical axioms
Jordan Peterson - The pursuit of meaning and related ethical axiomsPhilip Schwarz
141 viewsβ€’12 slides
Defining filter using (a) recursion (b) folding (c) folding with S, B and I c... by
Defining filter using (a) recursion (b) folding (c) folding with S, B and I c...Defining filter using (a) recursion (b) folding (c) folding with S, B and I c...
Defining filter using (a) recursion (b) folding (c) folding with S, B and I c...Philip Schwarz
100 viewsβ€’1 slide
Defining filter using (a) recursion (b) folding with S, B and I combinators (... by
Defining filter using (a) recursion (b) folding with S, B and I combinators (...Defining filter using (a) recursion (b) folding with S, B and I combinators (...
Defining filter using (a) recursion (b) folding with S, B and I combinators (...Philip Schwarz
78 viewsβ€’1 slide
The Sieve of Eratosthenes - Part 1 - with minor corrections by
The Sieve of Eratosthenes - Part 1 - with minor correctionsThe Sieve of Eratosthenes - Part 1 - with minor corrections
The Sieve of Eratosthenes - Part 1 - with minor correctionsPhilip Schwarz
110 viewsβ€’50 slides

More from Philip Schwarz(20)

Sum and Product Types - The Fruit Salad & Fruit Snack Example - From F# to Ha... by Philip Schwarz
Sum and Product Types -The Fruit Salad & Fruit Snack Example - From F# to Ha...Sum and Product Types -The Fruit Salad & Fruit Snack Example - From F# to Ha...
Sum and Product Types - The Fruit Salad & Fruit Snack Example - From F# to Ha...
Philip Schwarzβ€’827 views
Algebraic Data Types for Data Oriented Programming - From Haskell and Scala t... by Philip Schwarz
Algebraic Data Types forData Oriented Programming - From Haskell and Scala t...Algebraic Data Types forData Oriented Programming - From Haskell and Scala t...
Algebraic Data Types for Data Oriented Programming - From Haskell and Scala t...
Philip Schwarzβ€’1.2K views
Jordan Peterson - The pursuit of meaning and related ethical axioms by Philip Schwarz
Jordan Peterson - The pursuit of meaning and related ethical axiomsJordan Peterson - The pursuit of meaning and related ethical axioms
Jordan Peterson - The pursuit of meaning and related ethical axioms
Philip Schwarzβ€’141 views
Defining filter using (a) recursion (b) folding (c) folding with S, B and I c... by Philip Schwarz
Defining filter using (a) recursion (b) folding (c) folding with S, B and I c...Defining filter using (a) recursion (b) folding (c) folding with S, B and I c...
Defining filter using (a) recursion (b) folding (c) folding with S, B and I c...
Philip Schwarzβ€’100 views
Defining filter using (a) recursion (b) folding with S, B and I combinators (... by Philip Schwarz
Defining filter using (a) recursion (b) folding with S, B and I combinators (...Defining filter using (a) recursion (b) folding with S, B and I combinators (...
Defining filter using (a) recursion (b) folding with S, B and I combinators (...
Philip Schwarzβ€’78 views
The Sieve of Eratosthenes - Part 1 - with minor corrections by Philip Schwarz
The Sieve of Eratosthenes - Part 1 - with minor correctionsThe Sieve of Eratosthenes - Part 1 - with minor corrections
The Sieve of Eratosthenes - Part 1 - with minor corrections
Philip Schwarzβ€’110 views
The Sieve of Eratosthenes - Part 1 by Philip Schwarz
The Sieve of Eratosthenes - Part 1The Sieve of Eratosthenes - Part 1
The Sieve of Eratosthenes - Part 1
Philip Schwarzβ€’1K views
The Uniform Access Principle by Philip Schwarz
The Uniform Access PrincipleThe Uniform Access Principle
The Uniform Access Principle
Philip Schwarzβ€’542 views
Computer Graphics in Java and Scala - Part 1b by Philip Schwarz
Computer Graphics in Java and Scala - Part 1bComputer Graphics in Java and Scala - Part 1b
Computer Graphics in Java and Scala - Part 1b
Philip Schwarzβ€’261 views
The Expression Problem - Part 2 by Philip Schwarz
The Expression Problem - Part 2The Expression Problem - Part 2
The Expression Problem - Part 2
Philip Schwarzβ€’650 views
Computer Graphics in Java and Scala - Part 1 by Philip Schwarz
Computer Graphics in Java and Scala - Part 1Computer Graphics in Java and Scala - Part 1
Computer Graphics in Java and Scala - Part 1
Philip Schwarzβ€’403 views
The Expression Problem - Part 1 by Philip Schwarz
The Expression Problem - Part 1The Expression Problem - Part 1
The Expression Problem - Part 1
Philip Schwarzβ€’1.2K views
Side by Side - Scala and Java Adaptations of Martin Fowler’s Javascript Refac... by Philip Schwarz
Side by Side - Scala and Java Adaptations of Martin Fowler’s Javascript Refac...Side by Side - Scala and Java Adaptations of Martin Fowler’s Javascript Refac...
Side by Side - Scala and Java Adaptations of Martin Fowler’s Javascript Refac...
Philip Schwarzβ€’268 views
Refactoring: A First Example - Martin Fowler’s First Example of Refactoring, ... by Philip Schwarz
Refactoring: A First Example - Martin Fowler’s First Example of Refactoring, ...Refactoring: A First Example - Martin Fowler’s First Example of Refactoring, ...
Refactoring: A First Example - Martin Fowler’s First Example of Refactoring, ...
Philip Schwarzβ€’312 views
Refactoring: A First Example - Martin Fowler’s First Example of Refactoring, ... by Philip Schwarz
Refactoring: A First Example - Martin Fowler’s First Example of Refactoring, ...Refactoring: A First Example - Martin Fowler’s First Example of Refactoring, ...
Refactoring: A First Example - Martin Fowler’s First Example of Refactoring, ...
Philip Schwarzβ€’630 views
β€˜go-to’ general-purpose sequential collections - from Java To Scala by Philip Schwarz
β€˜go-to’ general-purpose sequential collections -from Java To Scalaβ€˜go-to’ general-purpose sequential collections -from Java To Scala
β€˜go-to’ general-purpose sequential collections - from Java To Scala
Philip Schwarzβ€’767 views
The Functional Programming Triad of Map, Filter and Fold by Philip Schwarz
The Functional Programming Triad of Map, Filter and FoldThe Functional Programming Triad of Map, Filter and Fold
The Functional Programming Triad of Map, Filter and Fold
Philip Schwarzβ€’3.5K views
Functional Core and Imperative Shell - Game of Life Example - Haskell and Scala by Philip Schwarz
Functional Core and Imperative Shell - Game of Life Example - Haskell and ScalaFunctional Core and Imperative Shell - Game of Life Example - Haskell and Scala
Functional Core and Imperative Shell - Game of Life Example - Haskell and Scala
Philip Schwarzβ€’825 views
N-Queens Combinatorial Problem - Polyglot FP for Fun and Profit - Haskell and... by Philip Schwarz
N-Queens Combinatorial Problem - Polyglot FP for Fun and Profit - Haskell and...N-Queens Combinatorial Problem - Polyglot FP for Fun and Profit - Haskell and...
N-Queens Combinatorial Problem - Polyglot FP for Fun and Profit - Haskell and...
Philip Schwarzβ€’495 views
Quicksort - a whistle-stop tour of the algorithm in five languages and four p... by Philip Schwarz
Quicksort - a whistle-stop tour of the algorithm in five languages and four p...Quicksort - a whistle-stop tour of the algorithm in five languages and four p...
Quicksort - a whistle-stop tour of the algorithm in five languages and four p...
Philip Schwarzβ€’1.2K views

Recently uploaded

BushraDBR: An Automatic Approach to Retrieving Duplicate Bug Reports by
BushraDBR: An Automatic Approach to Retrieving Duplicate Bug ReportsBushraDBR: An Automatic Approach to Retrieving Duplicate Bug Reports
BushraDBR: An Automatic Approach to Retrieving Duplicate Bug ReportsRa'Fat Al-Msie'deen
8 viewsβ€’49 slides
DSD-INT 2023 Thermobaricity in 3D DCSM-FM - taking pressure into account in t... by
DSD-INT 2023 Thermobaricity in 3D DCSM-FM - taking pressure into account in t...DSD-INT 2023 Thermobaricity in 3D DCSM-FM - taking pressure into account in t...
DSD-INT 2023 Thermobaricity in 3D DCSM-FM - taking pressure into account in t...Deltares
9 viewsβ€’26 slides
DSD-INT 2023 3D hydrodynamic modelling of microplastic transport in lakes - J... by
DSD-INT 2023 3D hydrodynamic modelling of microplastic transport in lakes - J...DSD-INT 2023 3D hydrodynamic modelling of microplastic transport in lakes - J...
DSD-INT 2023 3D hydrodynamic modelling of microplastic transport in lakes - J...Deltares
9 viewsβ€’24 slides
SAP FOR TYRE INDUSTRY.pdf by
SAP FOR TYRE INDUSTRY.pdfSAP FOR TYRE INDUSTRY.pdf
SAP FOR TYRE INDUSTRY.pdfVirendra Rai, PMP
24 viewsβ€’3 slides
Team Transformation Tactics for Holistic Testing and Quality (Japan Symposium... by
Team Transformation Tactics for Holistic Testing and Quality (Japan Symposium...Team Transformation Tactics for Holistic Testing and Quality (Japan Symposium...
Team Transformation Tactics for Holistic Testing and Quality (Japan Symposium...Lisi Hocke
30 viewsβ€’124 slides
20231129 - Platform @ localhost 2023 - Application-driven infrastructure with... by
20231129 - Platform @ localhost 2023 - Application-driven infrastructure with...20231129 - Platform @ localhost 2023 - Application-driven infrastructure with...
20231129 - Platform @ localhost 2023 - Application-driven infrastructure with...sparkfabrik
5 viewsβ€’46 slides

Recently uploaded(20)

BushraDBR: An Automatic Approach to Retrieving Duplicate Bug Reports by Ra'Fat Al-Msie'deen
BushraDBR: An Automatic Approach to Retrieving Duplicate Bug ReportsBushraDBR: An Automatic Approach to Retrieving Duplicate Bug Reports
BushraDBR: An Automatic Approach to Retrieving Duplicate Bug Reports
Ra'Fat Al-Msie'deenβ€’8 views
DSD-INT 2023 Thermobaricity in 3D DCSM-FM - taking pressure into account in t... by Deltares
DSD-INT 2023 Thermobaricity in 3D DCSM-FM - taking pressure into account in t...DSD-INT 2023 Thermobaricity in 3D DCSM-FM - taking pressure into account in t...
DSD-INT 2023 Thermobaricity in 3D DCSM-FM - taking pressure into account in t...
Deltaresβ€’9 views
DSD-INT 2023 3D hydrodynamic modelling of microplastic transport in lakes - J... by Deltares
DSD-INT 2023 3D hydrodynamic modelling of microplastic transport in lakes - J...DSD-INT 2023 3D hydrodynamic modelling of microplastic transport in lakes - J...
DSD-INT 2023 3D hydrodynamic modelling of microplastic transport in lakes - J...
Deltaresβ€’9 views
Team Transformation Tactics for Holistic Testing and Quality (Japan Symposium... by Lisi Hocke
Team Transformation Tactics for Holistic Testing and Quality (Japan Symposium...Team Transformation Tactics for Holistic Testing and Quality (Japan Symposium...
Team Transformation Tactics for Holistic Testing and Quality (Japan Symposium...
Lisi Hockeβ€’30 views
20231129 - Platform @ localhost 2023 - Application-driven infrastructure with... by sparkfabrik
20231129 - Platform @ localhost 2023 - Application-driven infrastructure with...20231129 - Platform @ localhost 2023 - Application-driven infrastructure with...
20231129 - Platform @ localhost 2023 - Application-driven infrastructure with...
sparkfabrikβ€’5 views
DSD-INT 2023 Simulating a falling apron in Delft3D 4 - Engineering Practice -... by Deltares
DSD-INT 2023 Simulating a falling apron in Delft3D 4 - Engineering Practice -...DSD-INT 2023 Simulating a falling apron in Delft3D 4 - Engineering Practice -...
DSD-INT 2023 Simulating a falling apron in Delft3D 4 - Engineering Practice -...
Deltaresβ€’6 views
Keep by Geniusee
KeepKeep
Keep
Geniuseeβ€’75 views
DSD-INT 2023 Salt intrusion Modelling of the Lauwersmeer, towards a measureme... by Deltares
DSD-INT 2023 Salt intrusion Modelling of the Lauwersmeer, towards a measureme...DSD-INT 2023 Salt intrusion Modelling of the Lauwersmeer, towards a measureme...
DSD-INT 2023 Salt intrusion Modelling of the Lauwersmeer, towards a measureme...
Deltaresβ€’5 views
DSD-INT 2023 Wave-Current Interaction at Montrose Tidal Inlet System and Its ... by Deltares
DSD-INT 2023 Wave-Current Interaction at Montrose Tidal Inlet System and Its ...DSD-INT 2023 Wave-Current Interaction at Montrose Tidal Inlet System and Its ...
DSD-INT 2023 Wave-Current Interaction at Montrose Tidal Inlet System and Its ...
Deltaresβ€’11 views
FIMA 2023 Neo4j & FS - Entity Resolution.pptx by Neo4j
FIMA 2023 Neo4j & FS - Entity Resolution.pptxFIMA 2023 Neo4j & FS - Entity Resolution.pptx
FIMA 2023 Neo4j & FS - Entity Resolution.pptx
Neo4jβ€’7 views
.NET Developer Conference 2023 - .NET Microservices mit Dapr – zu viel Abstra... by Marc MΓΌller
.NET Developer Conference 2023 - .NET Microservices mit Dapr – zu viel Abstra....NET Developer Conference 2023 - .NET Microservices mit Dapr – zu viel Abstra...
.NET Developer Conference 2023 - .NET Microservices mit Dapr – zu viel Abstra...
Marc MΓΌllerβ€’38 views
The Era of Large Language Models.pptx by AbdulVahedShaik
The Era of Large Language Models.pptxThe Era of Large Language Models.pptx
The Era of Large Language Models.pptx
AbdulVahedShaikβ€’5 views
Dev-HRE-Ops - Addressing the _Last Mile DevOps Challenge_ in Highly Regulated... by TomHalpin9
Dev-HRE-Ops - Addressing the _Last Mile DevOps Challenge_ in Highly Regulated...Dev-HRE-Ops - Addressing the _Last Mile DevOps Challenge_ in Highly Regulated...
Dev-HRE-Ops - Addressing the _Last Mile DevOps Challenge_ in Highly Regulated...
TomHalpin9β€’6 views
Fleet Management Software in India by Fleetable
Fleet Management Software in India Fleet Management Software in India
Fleet Management Software in India
Fleetableβ€’11 views
SUGCON ANZ Presentation V2.1 Final.pptx by Jack Spektor
SUGCON ANZ Presentation V2.1 Final.pptxSUGCON ANZ Presentation V2.1 Final.pptx
SUGCON ANZ Presentation V2.1 Final.pptx
Jack Spektorβ€’22 views
Generic or specific? Making sensible software design decisions by Bert Jan Schrijver
Generic or specific? Making sensible software design decisionsGeneric or specific? Making sensible software design decisions
Generic or specific? Making sensible software design decisions
Bert Jan Schrijverβ€’6 views
Dapr Unleashed: Accelerating Microservice Development by Miroslav Janeski
Dapr Unleashed: Accelerating Microservice DevelopmentDapr Unleashed: Accelerating Microservice Development
Dapr Unleashed: Accelerating Microservice Development
Miroslav Janeskiβ€’10 views
Myths and Facts About Hospice Care: Busting Common Misconceptions by Care Coordinations
Myths and Facts About Hospice Care: Busting Common MisconceptionsMyths and Facts About Hospice Care: Busting Common Misconceptions
Myths and Facts About Hospice Care: Busting Common Misconceptions
Care Coordinationsβ€’5 views

Nat, List and Option Monoids - from scratch - Combining and Folding - an example

  • 1. @philip_schwarz slides by https://www.slideshare.net/pjschwarz Nat, List and Option Monoids from scratch Combining and Folding an example
  • 2. enum Nat: case Zero case Succ(n: Nat) 𝐝𝐚𝐭𝐚 𝑡𝒂𝒕 = 𝒁𝒆𝒓𝒐 | 𝑺𝒖𝒄𝒄 𝑡𝒂𝒕 + ∷ 𝑡𝒂𝒕 β†’ 𝑡𝒂𝒕 β†’ 𝑡𝒂𝒕 π‘š + 𝒁𝒆𝒓𝒐 = π‘š π‘š + 𝑺𝒖𝒄𝒄 𝑛 = 𝑺𝒖𝒄𝒄 π‘š + 𝑛 (Γ—) ∷ 𝑡𝒂𝒕 β†’ 𝑡𝒂𝒕 β†’ 𝑡𝒂𝒕 π‘š Γ— 𝒁𝒆𝒓𝒐 = 𝒁𝒆𝒓𝒐 π‘š Γ— 𝑺𝒖𝒄𝒄 𝑛 = π‘š Γ— 𝑛 + π‘š extension (m: Nat) def +(n: Nat): Nat = n match case Zero => m case Succ(n) => Succ(m + n) def *(n: Nat): Nat = n match case Zero => Zero case Succ(n) => m * n + m assert( zero + one == one ) assert( one + zero == one ) assert( one + two == three ) assert( one + two + three == six ) val zero = Zero val one = Succ(zero) val two = Succ(one) val three = Succ(two) val four = Succ(three) val five = Succ(four) val six = Succ(five) assert( two * one == two ) assert( one * two == two ) assert( two * three == six ) assert( one * two * three == six )
  • 3. trait Semigroup[A]: def combine(x: A, y: A): A object Semigroup: extension [A](lhs: A)(using m: Semigroup[A]) def ⨁(rhs: A): A = m.combine(lhs,rhs) given Monoid[Nat] with def unit: Nat = Zero def combine(x: Nat, y: Nat): Nat = x + y trait Monoid[A] extends Semigroup[A]: def unit: A assert( summon[Monoid[Nat]].combine(two,three) == five ) assert( (two ⨁ three) == five ) assert( (one ⨁ two ⨁ three) == six )
  • 4. val oneTwo = Cons(one,Cons(two,Nil)) val threeFour = Cons(three,Cons(four,Nil)) assert(append(oneTwo,threeFour) == Cons(one,Cons(two,Cons(three,Cons(four,Nil))))) assert(oneTwo ++ threeFour == Cons(one,Cons(two,Cons(three,Cons(four,Nil))))) enum List[+A]: case Cons(head: A, tail: List[A]) case Nil 𝒅𝒂𝒕𝒂 π‘³π’Šπ’”π’• 𝛼 = π‘΅π’Šπ’ | π‘ͺ𝒐𝒏𝒔 𝛼 (π‘³π’Šπ’”π’• 𝛼) π‘ͺ𝒐𝒏𝒔 1 (π‘ͺ𝒐𝒏𝒔 2 (π‘ͺ𝒐𝒏𝒔 3 π‘΅π’Šπ’ )) object List: def append[A](lhs: List[A], rhs: List[A]): List[A] = lhs match case Nil => rhs case Cons(a, rest) => Cons(a,append(rest,rhs)) extension [A](lhs: List[A]) def ++(rhs: List[A]): List[A] = append(lhs,rhs)
  • 5. assert(List(one,two,three) == Cons(one,Cons(two,Cons(three,Nil)))) assert(List(one,two) ++ List(three, four) ++ Nil == List(one,two,three,four)) given ListMonoid[A]: Monoid[List[A]] with def unit: List[A] = Nil def combine(lhs: List[A], rhs: List[A]): List[A] = lhs ++ rhs assert(summon[Monoid[List[Nat]]].combine(List(one,two),List(three, four)) == List(one,two,three,four)) assert((List(one,two) ⨁ List(three, four)) == List(one,two,three,four)) object List: def apply[A](as: A*): List[A] = as match case Seq() => Nil case _ => Cons(as.head, List(as.tail*)) def append[A](lhs: List[A], rhs: List[A]): List[A] = lhs match case Nil => rhs case Cons(a, rest) => Cons(a,append(rest,rhs)) extension [A](lhs: List[A]) def ++(rhs: List[A]): List[A] = append(lhs,rhs)
  • 6. object List: def apply[A](as: A*): List[A] = as match case Seq() => Nil case _ => Cons(as.head, List(as.tail*)) def nil[A]: List[A] = Nil def append[A](lhs: List[A], rhs: List[A]): List[A] = lhs match case Nil => rhs case Cons(a, rest) => Cons(a,append(rest,rhs)) extension [A](lhs: List[A]) def ++(rhs: List[A]): List[A] = append(lhs,rhs) def fold[A](as: List[A])(using ma: Monoid[A]): A = as match case Nil => ma.unit case Cons(a,rest) => ma.combine(a,fold(rest)) assert(fold(List(one,two,three,four)) == one + two + three + four) assert(fold(nil[Nat]) == zero) assert(fold(List(List(one,two),Nil,List(three, four),List(five,six))) == List(one,two,three,four,five,six))
  • 7. object List: def apply[A](as: A*): List[A] = as match case Seq() => Nil case _ => Cons(as.head, List(as.tail*)) def nil[A]: List[A] = Nil def append[A](lhs: List[A], rhs: List[A]): List[A] = lhs match case Nil => rhs case Cons(a, rest) => Cons(a,append(rest,rhs)) extension [A](lhs: List[A]) def ++(rhs: List[A]): List[A] = append(lhs,rhs) def fold[A](as: List[A])(using ma: Monoid[A]): A = foldRight(as, ma.unit, (a,b) => ma.combine(a,b)) def foldRight[A,B](as: List[A], b: B, f: (A, B) => B): B = as match case Nil => b case Cons(a,rest) => f(a,foldRight(rest,b,f)) assert(fold(List(one,two,three,four)) == one + two + three + four) assert(fold(nil[Nat]) == zero) assert(fold(List(List(one,two),Nil,List(three, four),List(five,six))) == List(one,two,three,four,five,six)) Same as the previous slide, except that here we define fold in terms of foldRight. @philip_schwarz
  • 8. val natMultMonoid = new Monoid[Nat]: def unit: Nat = Succ(Zero) def combine(x: Nat, y: Nat): Nat = x * y assert(fold(List(one,two,three,four))(using natMultMonoid) == one * two * three * four) assert(fold(nil[Nat])(using natMultMonoid) == one)
  • 9. given OptionMonoid[A:Semigroup]: Monoid[Option[A]] with def unit: Option[A] = None def combine(ox: Option[A], oy: Option[A]): Option[A] = (ox,oy) match case (None,_) => oy case (_,None) => ox case (Some(x),Some(y)) => Some(x ⨁ y) enum Option[+A]: case None case Some(value:A) object Option: def none[A]: Option[A] = None def some[A](a:A): Option[A] = Some(a) assert((some(two) ⨁ None) == Some(two)) assert((none[Nat] ⨁ Some(two)) == Some(two)) assert((some(two) ⨁ Some(three)) == Some(five)) assert((none[Nat] ⨁ None) == None) assert(summon[Monoid[Option[Nat]]].combine(Some(two),Some(three)) == Some(five)) assert(summon[Monoid[Option[Nat]]].combine(Some(two),None) == Some(two)) assert(summon[Monoid[Option[Nat]]].combine(none[Nat],Some(two)) == Some(two)) assert(summon[Monoid[Option[Nat]]].combine(none[Nat],None) == None) 𝒅𝒂𝒕𝒂 π‘΄π’‚π’šπ’ƒπ’† 𝛼 = π‘΅π’π’•π’‰π’Šπ’π’ˆ | 𝑱𝒖𝒔𝒕 𝛼
  • 10. assert(fold(List(Some(two),None,Some(three))) == Some(five)) assert(fold(nil[Option[Nat]]) == None) assert((List(Some(one),None,Some(two)) ++ List(Some(three),None,Some(four))) == List(Some(one),None,Some(two),Some(three),None,Some(four))) assert(summon[Monoid[List[Option[Nat]]]].combine(List(Some(one),None,Some(two)),List(Some(three),None,Some(four))) == List(Some(one),None,Some(two),Some(three),None,Some(four))) assert((List(Some(one),None,Some(two)) ⨁ List(Some(three),None,Some(four))) == List(Some(one),None,Some(two),Some(three),None,Some(four))) assert(fold(List(Some(one),None,Some(two)) ⨁ List(Some(three),None,Some(four))) == Some(one + two + three + four))
  • 11. assert( fold( fold( List(List(Some(one), None, Some(two)), List(Some(three), None, Some(four)), List(Some(five), None, Some(six))) ) ) == Some(one + two + three + four + five + six)) assert((some(List(one,two)) ⨁ None ⨁ Some(List(three,four))) == Some(List(one,two,three,four)))
  • 12. That’s all. I hope you found it useful. @philip_schwarz