How Animals Move - Chapter 30


Published on

Published in: Education
1 Like
  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

How Animals Move - Chapter 30

  1. 1. Chapter 30 How Animals Move 0
  2. 2. <ul><li>Elephants Do the “Groucho Gait” </li></ul><ul><ul><li>Scientists paint spots on the sides of elephants </li></ul></ul><ul><ul><ul><li>To study their pattern of movement </li></ul></ul></ul>John Hutchinson (far left) of Stanford University paints spots on Tika, an Asian elephant
  3. 3. <ul><ul><li>Elephants and Groucho Marx have one thing in common </li></ul></ul><ul><ul><ul><li>The way they walk, kicking their feet forward </li></ul></ul></ul>Groucho Marx
  4. 4. <ul><ul><li>Movement </li></ul></ul><ul><ul><ul><li>Is one of the most distinctive features of animals </li></ul></ul></ul>
  5. 5. MOVEMENT AND LOCOMOTION <ul><li>30.1 Diverse means of animal locomotion have evolved </li></ul><ul><ul><li>Locomotion, active travel from place to place </li></ul></ul><ul><ul><ul><li>Requires that an animal use energy to overcome friction and gravity </li></ul></ul></ul>
  6. 6. <ul><li>Swimming </li></ul><ul><ul><li>Animals that swim </li></ul></ul><ul><ul><ul><li>Are supported by water but are slowed by friction </li></ul></ul></ul>Figure 30.1A
  7. 7. <ul><li>Locomotion on Land: Hopping, Walking, Running, and Crawling </li></ul><ul><ul><li>Animals that walk, hop, or run on land </li></ul></ul><ul><ul><ul><li>Are less affected by friction, but must support themselves against gravity </li></ul></ul></ul>Figure 30.1B, C
  8. 8. <ul><ul><li>Burrowing or crawling animals </li></ul></ul><ul><ul><ul><li>Must overcome friction </li></ul></ul></ul><ul><ul><ul><li>May move by side-to-side undulation or by peristalsis </li></ul></ul></ul>1 Figure 30.1D 2 3 Longitudinal muscle relaxed (extended) Circular muscle contracted Circular muscle relaxed Longitudinal muscle contracted Head Bristles
  9. 9. <ul><li>Flying </li></ul><ul><ul><li>The wings of birds, bats, and flying insects </li></ul></ul><ul><ul><ul><li>Are airfoils, which generate lift </li></ul></ul></ul>Airfoil Figure 30.1E
  10. 10. SKELETAL SUPPORT <ul><li>30.2 Skeletons function in support, movement, and protection </li></ul><ul><ul><li>A skeleton has many functions </li></ul></ul><ul><ul><ul><li>Body support </li></ul></ul></ul><ul><ul><ul><li>Movement as muscles pull against it </li></ul></ul></ul><ul><ul><ul><li>Protection of internal organs </li></ul></ul></ul>
  11. 11. <ul><li>Hydrostatic Skeletons </li></ul><ul><ul><li>Hydrostatic skeletons </li></ul></ul><ul><ul><ul><li>Consist of fluid held under pressure in a closed body compartment </li></ul></ul></ul><ul><ul><ul><li>Are found in worms and cnidarians </li></ul></ul></ul>Figure 30.2A
  12. 12. <ul><li>Exoskeletons </li></ul><ul><ul><li>Exoskeletons are hard external cases </li></ul></ul><ul><ul><ul><li>Such as the chitinous, jointed skeletons of arthropods </li></ul></ul></ul>Figure 30.2B
  13. 13. <ul><ul><ul><li>That also include the shells of some molluscs </li></ul></ul></ul>Shell (exoskeleton) Mantle Figure 30.2C
  14. 14. <ul><li>Endoskeletons </li></ul><ul><ul><li>An endoskeleton consists of hard or leathery supporting elements </li></ul></ul><ul><ul><ul><li>Situated among the soft tissues of an animal </li></ul></ul></ul>Figure 30.2D
  15. 15. <ul><ul><li>The vertebrate endoskeleton </li></ul></ul><ul><ul><ul><li>Is composed of cartilage and bone </li></ul></ul></ul>Figure 30.2E
  16. 16. <ul><li>30.3 The human skeleton is a unique variation on an ancient theme </li></ul><ul><ul><li>The human skeleton consists of </li></ul></ul><ul><ul><ul><li>An axial skeleton (skull, vertebrae, and ribs) </li></ul></ul></ul><ul><ul><ul><li>An appendicular skeleton (shoulder girdle, upper limbs, pelvic girdle, and lower limbs) </li></ul></ul></ul>
  17. 17. <ul><ul><li>The human skeleton </li></ul></ul>Skull Examples of joints 1 2 3 Clavicle Scapula Shoulder girdle Sternum Ribs Humerus Vertebra Radius Ulna Pelvic girdle Carpals Phalanges Metacarpals Femur Patella Tibia Fibula Tarsals Metatarsals Phalanges Figure 30.3A
  18. 18. <ul><ul><li>The vertebrate skeleton </li></ul></ul><ul><ul><ul><li>Changed dramatically as upright posture and bipedalism evolved </li></ul></ul></ul>Human (bipedal) Baboon (quadrupedal) Figure 30.3B
  19. 19. <ul><ul><li>Movable joints </li></ul></ul><ul><ul><ul><li>Provide the human skeleton with flexibility </li></ul></ul></ul>1 2 3 Ball-and-socket joint Hinge joint Pivot joint Head of humerus Scapula Ulna Humerus Ulna Radius Figure 30.3C
  20. 20. <ul><li>30.4 Bones are complex living organs </li></ul><ul><ul><li>Cartilage at the ends of bones </li></ul></ul><ul><ul><ul><li>Cushions the joints </li></ul></ul></ul>
  21. 21. <ul><ul><li>Bone cells, serviced by blood vessels and nerves </li></ul></ul><ul><ul><ul><li>Live in a matrix of flexible protein fibers and hard calcium salts </li></ul></ul></ul>Cartilage Blood vessels Fibrous connective tissue Yellow bone marrow Central cavity Compact bone Spongy bone (contains red bone marrow) Cartilage Figure 30.4
  22. 22. <ul><ul><li>Long bones have a central cavity </li></ul></ul><ul><ul><ul><li>That stores yellow bone marrow, which is mostly stored fat </li></ul></ul></ul><ul><ul><li>Spongy bone contains red marrow </li></ul></ul><ul><ul><ul><li>Where blood cells are made </li></ul></ul></ul>
  23. 23. CONNECTION <ul><li>30.5 Broken bones can heal themselves </li></ul><ul><ul><li>Broken bones </li></ul></ul><ul><ul><ul><li>Are realigned and immobilized </li></ul></ul></ul>Figure 30.5A
  24. 24. <ul><ul><li>Bone cells </li></ul></ul><ul><ul><ul><li>Build new bone, healing the break </li></ul></ul></ul>
  25. 25. <ul><ul><li>Artificial joints </li></ul></ul><ul><ul><ul><li>Are often used to repair severe injuries </li></ul></ul></ul>Figure 30.5B
  26. 26. CONNECTION <ul><li>30.6 Weak, brittle bones are a serious health problem, even in young people </li></ul><ul><ul><li>Osteoporosis, a bone disease characterized by weak, porous bones </li></ul></ul><ul><ul><ul><li>Is a growing health concern </li></ul></ul></ul>Colorized SEM 50  Colorized SEM 50  Figure 30.6
  27. 27. MUSCLE CONTRACTION AND MOVEMENT <ul><li>30.7 The skeleton and muscles interact in movement </li></ul><ul><ul><li>Antagonistic pairs of muscles </li></ul></ul><ul><ul><ul><li>Produce opposite movements </li></ul></ul></ul>Biceps contracted, triceps relaxed (extended) Triceps contracted, biceps relaxed Biceps Triceps Triceps Biceps Tendon Figure 30.7
  28. 28. <ul><ul><li>Muscles perform work </li></ul></ul><ul><ul><ul><li>Only when contracting </li></ul></ul></ul>
  29. 29. <ul><li>30.8 Each muscle cell has its own contractile apparatus </li></ul><ul><ul><li>Skeletal muscle </li></ul></ul><ul><ul><ul><li>Produces body movements </li></ul></ul></ul>
  30. 30. <ul><ul><li>Muscle fibers, or cells </li></ul></ul><ul><ul><ul><li>Consist of bundles of myofibrils </li></ul></ul></ul><ul><ul><li>Myofibrils </li></ul></ul><ul><ul><ul><li>Contain bundles of overlapping thick (myosin) and thin (actin) protein filaments </li></ul></ul></ul>
  31. 31. <ul><ul><li>Sarcomeres </li></ul></ul><ul><ul><ul><li>Are repeating groups of thick and thin filaments </li></ul></ul></ul><ul><ul><ul><li>Are the contractile units </li></ul></ul></ul>Figure 30.8 Sarcomere Z line Z line Thin filaments (actin) Thick filaments (myosin) Light band Dark band Light band Sarcomere TEM 26,000  Z line Light band Light band Dark band Myofibril Nuclei Single muscle fiber (cell) Bundle of muscle fibers Muscle
  32. 32. <ul><li>30.9 A muscle contracts when thin filaments slide across thick filaments </li></ul><ul><ul><li>The sliding-filament model </li></ul></ul><ul><ul><ul><li>Explains muscle contraction </li></ul></ul></ul>Sarcomere Dark band Z Z Contracted sarcomere Relaxed muscle Contracting muscle Fully contracted muscle Figure 30.9A
  33. 33. <ul><ul><li>The myosin heads of the thick filaments </li></ul></ul><ul><ul><ul><li>Bind ATP and extend to high-energy states </li></ul></ul></ul><ul><ul><li>The heads then attach to binding sites on the actin molecules </li></ul></ul><ul><ul><ul><li>And pull the thin filaments toward the center of the sarcomere </li></ul></ul></ul>
  34. 34. <ul><ul><li>The mechanism of filament sliding </li></ul></ul>Figure 30.9B Thick filament (myosin) ATP Thin filament (actin) Myosin head Z line ADP P ADP P ADP + P New position of Z line ATP binds to a myosin head, which is released from an actin filament. 1 Hydrolysis of ATP extends the myosin head. 2 The myosin head attaches to an actin binding site. 3 The power stroke slides the actin (thin) filament toward the center of the sarcomere. 4
  35. 35. <ul><li>30.10 Motor neurons stimulate muscle contraction </li></ul><ul><ul><li>Motor neurons carry action potentials </li></ul></ul><ul><ul><ul><li>That stimulate muscle contraction </li></ul></ul></ul>
  36. 36. <ul><ul><li>A motor unit consists of </li></ul></ul><ul><ul><ul><li>A neuron and the muscle fibers it controls </li></ul></ul></ul>Bone Tendon Muscle Neuromuscular junctions Muscle fibers (cells) Nuclei Motor neuron axon Nerve Motor neuron cell body Spinal cord Motor unit 1 Motor unit 2 Figure 30.10A
  37. 37. <ul><ul><li>The axon of a motor neuron </li></ul></ul><ul><ul><ul><li>Forms synapses with the muscle at a neuromuscular junction </li></ul></ul></ul>Ca 2+ released from ER Sarcomere Plasma membrane Myofibril Endoplasmic reticulum (ER) Tubule Motor neuron axon Action potential Mitochondrion Figure 30.10B
  38. 38. <ul><ul><li>Acetylcholine released at a neuromuscular junction triggers an action potential </li></ul></ul><ul><ul><ul><li>That passes along tubules into the center of the muscle cell </li></ul></ul></ul><ul><ul><li>Calcium released from the endoplasmic reticulum </li></ul></ul><ul><ul><ul><li>Initiates muscle contraction </li></ul></ul></ul>
  39. 39. CONNECTION <ul><li>30.11 Athletic training increases strength and endurance </li></ul><ul><ul><li>A balance of aerobic and anaerobic exercise </li></ul></ul><ul><ul><ul><li>Increases endurance and strength </li></ul></ul></ul>Figure 30.11
  40. 40. <ul><li>30.12 The structure-function theme underlies all the parts and activities of an animal </li></ul><ul><ul><li>Animal movement </li></ul></ul><ul><ul><ul><li>Is a visible reminder that function emerges from structure </li></ul></ul></ul>
  41. 41. <ul><ul><li>An animal’s nervous system </li></ul></ul><ul><ul><ul><li>Connects sensations derived from environmental stimuli to responses carried out by its muscles </li></ul></ul></ul>Figure 30.12