Proteobacteria
2002 TM6
OS-K
Acidobacteria
• At least 40
Termite Group
OP8
phyla of
Nitrospira
Bacteroides
bacteria
Chlorobi
Fibrobacteres
Marine GroupA
WS3
Gemmimonas
Firmicutes
Fusobacteria
Actinobacteria
OP9
Cyanobacteria
Synergistes
Deferribacteres
Chrysiogenetes
NKB19
Verrucomicrobia
Chlamydia
OP3
Planctomycetes
Spriochaetes
Coprothmermobacter
OP10
Thermomicrobia
Chloroflexi
TM7
Deinococcus-Thermus
Dictyoglomus
Aquificae
Thermudesulfobacteria
Thermotogae
OP1 Based on Hugenholtz,
OP11 2002
2002
Proteobacteria
TM6
OS-K
• At least 40
Acidobacteria
Termite Group
OP8
phyla of
Nitrospira
Bacteroides
bacteria
Chlorobi
Fibrobacteres
Marine GroupA
• Genome
WS3
Gemmimonas sequences are
Firmicutes
Fusobacteria mostly from
Actinobacteria
OP9
Cyanobacteria
three phyla
Synergistes
Deferribacteres
Chrysiogenetes
NKB19
Verrucomicrobia
Chlamydia
OP3
Planctomycetes
Spriochaetes
Coprothmermobacter
OP10
Thermomicrobia
Chloroflexi
TM7
Deinococcus-Thermus
Dictyoglomus
Aquificae
Thermudesulfobacteria
Thermotogae
OP1 Based on Hugenholtz,
OP11 2002
2002
Proteobacteria
TM6
OS-K
• At least 40
Acidobacteria
Termite Group
OP8
phyla of
Nitrospira
Bacteroides
bacteria
Chlorobi
Fibrobacteres
Marine GroupA
• Genome
WS3
Gemmimonas sequences are
Firmicutes
Fusobacteria mostly from
Actinobacteria
OP9
Cyanobacteria
three phyla
Synergistes
Deferribacteres
Chrysiogenetes • Some other
NKB19
Verrucomicrobia
Chlamydia
phyla are only
OP3
Planctomycetes
Spriochaetes
sparsely
Coprothmermobacter
OP10
sampled
Thermomicrobia
Chloroflexi
TM7
Deinococcus-Thermus
Dictyoglomus
Aquificae
Thermudesulfobacteria
Thermotogae
OP1 Based on Hugenholtz,
OP11 2002
2002
Proteobacteria
TM6
OS-K
• At least 40
Acidobacteria
Termite Group
OP8
phyla of
Nitrospira
Bacteroides
bacteria
Chlorobi
Fibrobacteres
Marine GroupA
• Genome
WS3
Gemmimonas sequences are
Firmicutes
Fusobacteria mostly from
Actinobacteria
OP9
Cyanobacteria
three phyla
Synergistes
Deferribacteres
Chrysiogenetes • Some other
NKB19
Verrucomicrobia
Chlamydia
phyla are only
OP3
Planctomycetes
Spriochaetes
sparsely
Coprothmermobacter
OP10
sampled
Thermomicrobia
Chloroflexi
TM7
Deinococcus-Thermus
Dictyoglomus
Aquificae
Thermudesulfobacteria
Thermotogae
OP1 Based on Hugenholtz,
OP11 2002
Why Increase Phylogenetic Coverage?
• Common approach within some eukaryotic
groups (FGP, NHGRI, etc)
• Many successful small projects to fill in
bacterial or archaeal gaps
• Phylogenetic gaps in bacterial and archaeal
projects commonly lamented in literature
• Many potential benefits
Proteobacteria
• NSF-funded TM6 • At least 40 phyla
OS-K
Tree of Life Acidobacteria
Termite Group of bacteria
OP8
Project Nitrospira
• Genome
Bacteroides
Chlorobi
• A genome Fibrobacteres
Marine GroupA
sequences are
from each of WS3
Gemmimonas mostly from
eight phyla Firmicutes
Fusobacteria three phyla
Actinobacteria
OP9
Cyanobacteria
Synergistes
• Some other
Deferribacteres
Chrysiogenetes phyla are only
NKB19
Verrucomicrobia
Chlamydia
sparsely sampled
OP3
Planctomycetes
Spriochaetes
• Solution I:
Coprothmermobacter
OP10 sequence more
Thermomicrobia
Chloroflexi
TM7
phyla
Deinococcus-Thermus
Dictyoglomus
Aquificae
Eisen & Ward, PIs Thermudesulfobacteria
Thermotogae
OP1
OP11
Proteobacteria
• NSF-funded TM6 • At least 40 phyla
OS-K
Tree of Life Acidobacteria
Termite Group of bacteria
OP8
Project Nitrospira
• Genome
Bacteroides
Chlorobi
• A genome Fibrobacteres
Marine GroupA
sequences are
from each of WS3
Gemmimonas mostly from
eight phyla Firmicutes
Fusobacteria three phyla
Actinobacteria
OP9
Cyanobacteria
Synergistes
• Some other
Deferribacteres
Chrysiogenetes phyla are only
NKB19
Verrucomicrobia
Chlamydia
sparsely sampled
OP3
Planctomycetes
Spriochaetes
• Still highly
Coprothmermobacter
OP10 biased in terms
Thermomicrobia
Chloroflexi
TM7
of the tree
Deinococcus-Thermus
Dictyoglomus
Aquificae
Eisen & Ward, PIs Thermudesulfobacteria
Thermotogae
OP1
OP11
Proteobacteria
• NSF-funded TM6 • At least 40 phyla
OS-K
Tree of Life Acidobacteria
Termite Group of bacteria
OP8
Project Nitrospira
• Genome
Bacteroides
Chlorobi
• A genome Fibrobacteres
Marine GroupA
sequences are
from each of WS3
Gemmimonas mostly from
eight phyla Firmicutes
Fusobacteria three phyla
Actinobacteria
OP9
Cyanobacteria
Synergistes
• Some other
Deferribacteres
Chrysiogenetes phyla are only
NKB19
Verrucomicrobia
Chlamydia
sparsely sampled
OP3
Planctomycetes
Spriochaetes
• Same trend in
Coprothmermobacter
OP10 Archaea
Thermomicrobia
Chloroflexi
TM7
Deinococcus-Thermus
Dictyoglomus
Aquificae
Eisen & Ward, PIs Thermudesulfobacteria
Thermotogae
OP1
OP11
Proteobacteria
• NSF-funded TM6 • At least 40 phyla
OS-K
Tree of Life Acidobacteria
Termite Group of bacteria
OP8
Project Nitrospira
• Genome
Bacteroides
Chlorobi
• A genome Fibrobacteres
Marine GroupA
sequences are
from each of WS3
Gemmimonas mostly from
eight phyla Firmicutes
Fusobacteria three phyla
Actinobacteria
OP9
Cyanobacteria
Synergistes
• Some other
Deferribacteres
Chrysiogenetes phyla are only
NKB19
Verrucomicrobia
Chlamydia
sparsely sampled
OP3
Planctomycetes
Spriochaetes
• Same trend in
Coprothmermobacter
OP10 Eukaryotes
Thermomicrobia
Chloroflexi
TM7
Deinococcus-Thermus
Dictyoglomus
Aquificae
Eisen & Ward, PIs Thermudesulfobacteria
Thermotogae
OP1
OP11
Proteobacteria
• NSF-funded TM6 • At least 40 phyla
OS-K
Tree of Life Acidobacteria
Termite Group of bacteria
OP8
Project Nitrospira
• Genome
Bacteroides
Chlorobi
• A genome Fibrobacteres
Marine GroupA
sequences are
from each of WS3
Gemmimonas mostly from
eight phyla Firmicutes
Fusobacteria three phyla
Actinobacteria
OP9
Cyanobacteria
Synergistes
• Some other
Deferribacteres
Chrysiogenetes phyla are only
NKB19
Verrucomicrobia
Chlamydia
sparsely sampled
OP3
Planctomycetes
Spriochaetes
• Same trend in
Coprothmermobacter
OP10 Viruses
Thermomicrobia
Chloroflexi
TM7
Deinococcus-Thermus
Dictyoglomus
Aquificae
Eisen & Ward, PIs Thermudesulfobacteria
Thermotogae
OP1
OP11
Proteobacteria
• GEBA TM6
OS-K • At least 40 phyla
Acidobacteria
• A genomic Termite Group
OP8
of bacteria
encyclopedia Nitrospira
Bacteroides • Genome
Chlorobi
of bacteria and Fibrobacteres
Marine GroupA sequences are
archaea WS3
Gemmimonas mostly from
Firmicutes
Fusobacteria
Actinobacteria
three phyla
OP9
Cyanobacteria
Synergistes
• Some other
Deferribacteres
Chrysiogenetes phyla are only
NKB19
Verrucomicrobia
Chlamydia sparsely sampled
OP3
Planctomycetes
Spriochaetes • Solution: Really
Coprothmermobacter
OP10
Thermomicrobia
Fill in the Tree
Chloroflexi
TM7
Deinococcus-Thermus
Dictyoglomus
Aquificae
Eisen & Ward, PIs Thermudesulfobacteria
Thermotogae
OP1
OP11
GEBA Pilot Project Overview
• Identify major branches in rRNA tree for
which no genomes are available
• Identify branches with a cultured
representative in DSMZ
• DSMZ grew > 200 of these and prepped DNA
• Sequence and finish 100 (covering breadth of
bacterial/archaea diversity)
• Annotate, analyze, release data
• Assess benefits of tree guided sequencing
• 1st paper Wu et al in Nature Dec 2009
GEBA Pilot Project: Components
• Project overview (Phil Hugenholtz, Nikos Kyrpides, Jonathan Eisen,
Eddy Rubin, Jim Bristow)
• Project management (David Bruce, Eileen Dalin, Lynne Goodwin)
• Culture collection and DNA prep (DSMZ, Hans-Peter Klenk)
• Sequencing and closure (Eileen Dalin, Susan Lucas, Alla Lapidus, Mat
Nolan, Alex Copeland, Cliff Han, Feng Chen, Jan-Fang Cheng)
• Annotation and data release (Nikos Kyrpides, Victor Markowitz, et al)
• Analysis (Dongying Wu, Kostas Mavrommatis, Martin Wu, Victor
Kunin, Neil Rawlings, Ian Paulsen, Patrick Chain, Patrik D’Haeseleer,
Sean Hooper, Iain Anderson, Amrita Pati, Natalia N. Ivanova,
Athanasios Lykidis, Adam Zemla)
• Adopt a microbe education project (Cheryl Kerfeld)
• Outreach (David Gilbert)
• $$$ (DOE, DSMZ, GBMF)
GEBA Lesson 1
rRNA Tree is Useful for Identifying
Phylogenetically Novel Organisms
rRNA Tree of Life
Bacteria
Archaea
Eukaryotes
FIgure from Barton, Eisen et al.
“Evolution”, CSHL Press.
Based on tree from Pace NR, 2003.
Network of Life
Bacteria
Archaea
Eukaryotes
Figure from Barton, Eisen et al.
“Evolution”, CSHL Press.
Based on tree from Pace NR, 2003.
“Whole Genome” Tree w/ AMPHORA
http://itol.embl.de/
Analogous to method of Ciccarelli et al.
See Wu and Eisen, Genome Biology 2008 9: R151
http://bobcat.genomecenter.ucdavis.edu/AMPHORA/
Network of Life
Bacteria
Archaea
Eukaryotes
FIgure from Barton, Eisen et al.
“Evolution”, CSHL Press.
Based on tree from Pace NR, 2003.
Protein Family Rarefaction
Curves
• Take data set of multiple complete genomes
• Identify all protein families using MCL
• Plot # of genomes vs. # of protein families
Most/All Functional Prediction Improves
w/ Better Phylogenetic Sampling
• Better definition of protein family sequence “patterns”
• Greatly improves “comparative” and “evolutionary”
based predictions
• Conversion of hypothetical into conserved
hypotheticals
• Linking distantly related members of protein families
• Improved non-homology prediction
Kostas Natalia Thanos Nikos Iain
Mavrommatis Ivanova Lykidis Kyrpides Anderson
Weighted % of Clones
0
0.1250
0.2500
0.3750
0.5000
Al
ph
ap
ro
t eo
ba
Be ct
t ap er
ia
ro
t eo
G ba
ct
am er
m ia
ap
ro
t eo
Ep ba
si ct
lo er
np ia
ro
t eo
De ba
lta ct
er
pr ia
ot
eo
ba
ct
C er
ia
ya
no
ba
ct
er
ia
Fi
rm
ic
ut
es
Ac
tin
ob
ac
te
ria
C
hl
or
ob
i
Major Phylogenetic Group
C
FB
Sargasso Phylotypes
C
hl
or
of
le
xi
Sp
iro
ch
ae
te
s
Fu
so
ba
ct
De er
in ia
oc
oc
cu
s-
Th
er
Eu m
ry us
ar
ch
ae
ot
C a
re
n ar
ch
ae
ot
a
Shotgun Sequencing Allows Use of Other Markers
Venter et al., 2004
EFG
EFTu
rRNA
RecA
RpoB
HSP70
Binning challenge
A T
B U
C V
D W
E X
F Y
G No reference genome? What do you do? Z
Binning challenge
A T
B U
C V
D W
E X
F Y
G No reference genome? What do you do? Z
Phylogeny ....
Al
ph
ap
ro
Be te
ta ob
G
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
pr ac
am ot te
m eo ria
ap ba
ro ct
D te er
el ob ia
ta
pr ac
Ep ot te
U si
lo eo ria
nc ba
la np
ss ro ct
ifi te er
ed ob ia
Pr ac
ot te
eo ria
ba
Cy ct
an er
ob ia
ac
Ch te
ria
la
m
Ac yd
id ia
ob e
Ba act
ct er
er ia
Ac oi
de
tin te
ob s
ac
te
ria
Aq
Pl ui
an fic
ct
om ae
yc
Sp et
AMPHORA - each read on its own tree
iro es
ch
ae
Fi te
rm s
ic
ut
Ch es
lo
ro
U fle
nc xi
la Ch
ss lo
ifi ro
ed bi
Ba
ct
er
ia
Phylogenetic Binning Using AMPHORA
frr
tsf
pgk
rplL
rplF
rplP
rplT
rplE
infC
rpsI
rplS
rplA
rplB
rplK
rplC
rpsJ
rplN
rplD
rplM
rpsE
rpsS
rpsB
rpsK
rpsC
rpoB
rpsM
pyrG
nusA
dnaG
rpmA
smpB
Al
ph
ap
ro
Be te
ta ob
G
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
pr ac
am ot te
m eo ria
ap ba
ro ct
D te er
el ob ia
ta
pr ac
Ep ot te
U si
lo eo ria
nc ba
la np
ss ro ct
ifi te er
ed ob ia
Pr ac
ot te
eo ria
ba
Cy ct
an er
ob ia
ac
Ch te
ria
la
m
Ac yd
sampling
id ia
ob e
Ba act
ct er
er ia
Ac oi
de
tin te
ob s
ac
te
poor genomic
ria
Aq
Pl ui
an fic
ct
om ae
yc
Sp et
AMPHORA - each read on its own tree
iro es
ch
Limited in past by
ae
Fi te
rm s
ic
ut
Ch es
lo
ro
U fle
nc xi
la Ch
ss lo
ifi ro
ed bi
Ba
ct
er
ia
Phylogenetic Binning Using AMPHORA
frr
tsf
pgk
rplL
rplF
rplP
rplT
rplE
infC
rpsI
rplS
rplA
rplB
rplK
rplC
rpsJ
rplN
rplD
rplM
rpsE
rpsS
rpsB
rpsK
rpsC
rpoB
rpsM
pyrG
nusA
dnaG
rpmA
smpB
Metagenomic Analysis Improves
w/ Phylogenetic Sampling
• Small but real improvements in
–Gene identification / confirmation
–Functional prediction
–Binning
–Phylogenetic classification
Metagenomic Analysis Improves
w/ Phylogenetic Sampling
• Small but real improvements in
–Gene identification / confirmation
–Functional prediction
–Binning
–Phylogenetic classification
• But not a lot ...
GEBA Future 1
Need to adapt genomic and
metagenomic methods to make use of
GEBA data
Al
ph
ap
ro
Be te
ta ob
G
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
pr ac
am ot te
m eo ria
ap ba
ro ct
D te er
el ob ia
ta
pr ac
Ep ot te
U si
lo eo ria
nc ba
la np
ss ro ct
ifi te er
ed ob ia
Pr ac
ot te
eo ria
ba
Cy ct
an er
ob ia
ac
Ch te
ria
la
m
Ac yd
id ia
ob e
Ba act
ct er
er ia
Ac oi
de
tin te
ob s
ac
te
ria
Aq
Pl ui
an fic
ct
om ae
yc
Sp et
AMPHORA - each read on its own tree
iro es
ch
ae
Fi te
rm s
ic
ut
Ch es
Improves with better
lo
ro
U fle
nc
phylogenetic methods
la xi
ss Ch
ifi lo
ed ro
bi
Ba
ct
er
ia
Phylogenetic Binning Using AMPHORA
frr
tsf
pgk
rplL
rplF
rplP
rplT
rplE
infC
rpsI
rplS
rplA
rplB
rplK
rplC
rpsJ
rplN
rplD
rplM
rpsE
rpsS
rpsB
rpsK
rpsC
rpoB
rpsM
pyrG
nusA
dnaG
rpmA
smpB
Improving Phylogeny for
Metagenomic Reads
• Examples using reference trees
– AMPHORA (Wu and Eisen)
– PPlacer (Erik Matsen)
– FastTree (Morgan Price)
• Variants
– Use concatenated alignment of markers not just
individual genes (Steven Kembel)
– Apply to OTU identification not just classification
(Thomas Sharpton)
– CoBinning: look for linkage among fragments/genes
(Aaron Darling)
Al
ph
ap
ro
Be te
ta ob
G
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
pr ac
am ot te
m eo ria
ap ba
ro ct
D te er
el ob ia
ta
pr ac
Ep ot te
U si
lo eo ria
nc ba
la np
ss ro ct
ifi te er
ed ob ia
Pr ac
ot te
eo ria
ba
Cy ct
an er
ob ia
ac
Ch te
ria
la
m
Ac yd
id ia
ob e
Ba act
ct er
er ia
Ac oi
de
tin te
ob s
ac
gene families
te
ria
Aq
Pl ui
an fic
ct
om ae
yc
Sp et
AMPHORA - each read on its own tree
iro es
ch
ae
Fi te
rm s
ic
ut
Improves with more
Ch es
lo
ro
U fle
nc xi
la Ch
ss lo
ifi ro
ed bi
Ba
ct
er
ia
Phylogenetic Binning Using AMPHORA
frr
tsf
pgk
rplL
rplF
rplP
rplT
rplE
infC
rpsI
rplS
rplA
rplB
rplK
rplC
rpsJ
rplN
rplD
rplM
rpsE
rpsS
rpsB
rpsK
rpsC
rpoB
rpsM
pyrG
nusA
dnaG
rpmA
smpB
Al
ph
ap
ro
Be te
ta ob
G
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
pr ac
am ot te
m eo ria
ap ba
ro ct
D te er
el ob ia
ta
pr ac
Ep ot te
U si
lo eo ria
nc ba
la np
ss ro ct
ifi te er
ed ob ia
Pr ac
ot te
eo ria
ba
Cy ct
an er
ob ia
ac
Ac
Ch
la
m
te
yd
ria models
id ia
ob e
Ba act
ct er
er ia
Ac oi
de
tin te
ob s
ac
te
ria
Aq
Improves with
Pl ui
an fic
ct
om ae
yc
Sp et
AMPHORA - each read on its own tree
iro es
ch
ae
Fi te
rm s
ic
ut
Ch es
lo
ro
U fle
nc xi
la Ch
ss
rebuilding gene family
ifi lo
ed ro
bi
Ba
ct
er
ia
Phylogenetic Binning Using AMPHORA
frr
tsf
pgk
rplL
rplF
rplP
rplT
rplE
infC
rpsI
rplS
rplA
rplB
rplK
rplC
rpsJ
rplN
rplD
rplM
rpsE
rpsS
rpsB
rpsK
rpsC
rpoB
rpsM
pyrG
nusA
dnaG
rpmA
smpB
Other Ways to Make Better Use
of the Data
• Rebuild protein family models
• Experiments from across the tree needed
• Need better phylogenies, including HGT
• Improved tools for using distantly related
genomes in metagenomic analysis
• Better recording and sharing of metadata
about organisms
Proteobacteria
TM6
OS-K
• At least 40 phyla of bacteria
Acidobacteria
Termite Group
OP8
• Genome sequences are mostly
Nitrospira
Bacteroides from three phyla
Chlorobi
Fibrobacteres
Marine GroupA • Most phyla with cultured
WS3
Gemmimonas
Firmicutes
species are sparsely sampled
Fusobacteria
Actinobacteria • Lineages with no cultured
OP9
Cyanobacteria
Synergistes
taxa even more poorly
Deferribacteres
Chrysiogenetes
NKB19
sampled
Verrucomicrobia
Chlamydia
OP3
Planctomycetes
Spriochaetes
Coprothmermobacter
OP10
Thermomicrobia
Chloroflexi
TM7
Deinococcus-Thermus
Dictyoglomus
Aquificae
Well sampled phyla
Thermudesulfobacteria
Thermotogae Poorly sampled
OP1
OP11 No cultured taxa
Proteobacteria
TM6
OS-K
Acidobacteria
Termite Group
• At least 40 phyla of bacteria
OP8
Nitrospira • Genome sequences are mostly
Bacteroides
Chlorobi
Fibrobacteres
from three phyla
Marine GroupA
WS3 • Most phyla with cultured
Gemmimonas
Firmicutes species are sparsely sampled
Fusobacteria
Actinobacteria
OP9
• Lineages with no cultured taxa
Cyanobacteria
Synergistes even more poorly sampled
Deferribacteres
Chrysiogenetes
NKB19
Verrucomicrobia
Chlamydia
OP3
Planctomycetes
Spriochaetes
Coprothmermobacter
OP10
Thermomicrobia
Chloroflexi
TM7
Deinococcus-Thermus
Dictyoglomus
Aquificae
Well sampled phyla
Thermudesulfobacteria
Thermotogae Poorly sampled
OP1
OP11 No cultured taxa
Uncultured Lineages:
Technical Approaches
• Get into culture
• Enrichment cultures
• If abundant in low diversity ecosystems
• Flow sorting
• Microbeads
• Microfluidic sorting
• Single cell amplification
Proteobacteria
• GEBA TM6
OS-K • At least 40 phyla
Acidobacteria
• A genomic Termite Group
OP8
of bacteria
encyclopedia Nitrospira
Bacteroides • Genome
Chlorobi
of bacteria and Fibrobacteres
Marine GroupA sequences are
archaea WS3
Gemmimonas mostly from
Firmicutes
Fusobacteria
Actinobacteria
three phyla
OP9
Cyanobacteria
Synergistes
• Some other
Deferribacteres
Chrysiogenetes phyla are only
NKB19
Verrucomicrobia
Chlamydia sparsely sampled
OP3
Planctomycetes
Spriochaetes • Solution: Really
Coprothmermobacter
OP10
Thermomicrobia
Fill in the Tree
Chloroflexi
TM7
Deinococcus-Thermus
Dictyoglomus
Aquificae
Eisen & Ward, PIs Thermudesulfobacteria
Thermotogae
OP1
OP11
GEBA Pilot Project: Components
• Project overview (Phil Hugenholtz, Nikos Kyrpides, Jonathan Eisen,
Eddy Rubin, Jim Bristow)
• Project management (David Bruce, Eileen Dalin, Lynne Goodwin)
• Culture collection and DNA prep (DSMZ, Hans-Peter Klenk)
• Sequencing and closure (Eileen Dalin, Susan Lucas, Alla Lapidus, Mat
Nolan, Alex Copeland, Cliff Han, Feng Chen, Jan-Fang Cheng)
• Annotation and data release (Nikos Kyrpides, Victor Markowitz, et al)
• Analysis (Dongying Wu, Kostas Mavrommatis, Martin Wu, Victor
Kunin, Neil Rawlings, Ian Paulsen, Patrick Chain, Patrik D’Haeseleer,
Sean Hooper, Iain Anderson, Amrita Pati, Natalia N. Ivanova,
Athanasios Lykidis, Adam Zemla)
• Adopt a microbe education project (Cheryl Kerfeld)
• Outreach (David Gilbert)
• $$$ (DOE, DSMZ, GBMF)
Editor's Notes
This is a tree of a rRNA gene that was found on a large DNA fragment isolated from the Monterey Bay. This rRNA gene groups in a tree with genes from members of the gamma Proteobacteria a group that includes E. coli as well as many environmental bacteria. This rRNA phylotype has been found to be a dominant species in many ocean ecosystems.
clone from the Sargasso Sea. This shows that this
Gets better with more markers - but we do not have lots of sequences for these markers. We can get them from genomes. The more diverse the genomes, thebeter the marker set will be
Gets better with more markers - but we do not have lots of sequences for these markers. We can get them from genomes. The more diverse the genomes, thebeter the marker set will be
Gets better with more markers - but we do not have lots of sequences for these markers. We can get them from genomes. The more diverse the genomes, thebeter the marker set will be
Gets better with more markers - but we do not have lots of sequences for these markers. We can get them from genomes. The more diverse the genomes, thebeter the marker set will be
Gets better with more markers - but we do not have lots of sequences for these markers. We can get them from genomes. The more diverse the genomes, thebeter the marker set will be