Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

CURRENT ELECTRICITY/ELECTROSTATICS FOR CBSE FREE REVISION SHEET BY ANURAG TYAGI CLASSES

5,100 views

Published on

ANURAG TYAGI CLASSES (ATC) is an organisation destined to orient students into correct path to achieve
success in IIT-JEE, AIEEE, PMT, CBSE & ICSE board classes. The organisation is run by a competitive staff comprising of Ex-IITians. Our goal at ATC is to create an environment that inspires students to recognise and explore their own potentials and build up confidence in themselves.ATC was founded by Mr. ANURAG TYAGI on 19 march, 2001.
MEET US AT:
www.anuragtyagiclasses.com

Published in: Education, Technology, Business
  • i need solutions of anurag tyagi classes by atc current electricity
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • anurag tyagi classes is the best iit-jee/aieee and medical coaching in ghaziabad.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here

CURRENT ELECTRICITY/ELECTROSTATICS FOR CBSE FREE REVISION SHEET BY ANURAG TYAGI CLASSES

  1. 1. Guess Paper – 2009 Class – XII Subject – Physics (ELECTROSTATICS) BY- ATS Time: 1hr Max Mark:40 Questions having one mark each: a) Write the S.I unit of (1) electric field intensity (2) Electric dipole moment. b) How does the coulomb force between two point charges depend upon the dielectric constant of the intervening medium? c) Draw an equipotential surface for a system, consisting of two charges Q, -Q separated by a distance ‘r’ apart. d) Show graphically the variation of charge ‘q’ with time’t’ when a condenser is charged. e) What orientation of an electric dipole in a uniform electric field would correspond to stable equilibrium? Questions having 2 marks each: a) Two point charges, q1 =10×10-8 C and q2 = -2×10-8 C are separated by a distance of 60 cm in air. (1)Find at what distance from the 1st charge, q1, would the electric potential be zero. (2) Also calculate the electrostatic potential energy of the system. b) Two capacitors of capacitance 6µF and 12µF are connected in series with a battery. The voltage across the 6µF capacitor is 2V. Compute the total battery voltage. c) An electric dipole is free to move in a uniform electric field. Explain its motion when it is placed (1) parallel to the field, (2) perpendicular to the field. d) An electric dipole of length 10 cm having charges ± 6×10-3 C, placed at 300 with respect to a uniform electric field experiences a torque of 6√3 N-m. Calculate (1) magnitude of electric field (2) the potential energy of the dipole. e) Electric charge is distributed uniformly on the surface of a spherical rubber balloon. Show how the value of electric intensity and potential vary (1) on the surface (2), inside and (3) outside? Questions having 3 mark each: a) State Gauss’s theorem in electrostatics. Apply this theorem to derive an expression for electric field intensity at a point near an infinitely long straight charged wire. b) Explain the underlying principle of working of a parallel plate capacitor. If two similar plates, each of area A having surface charge densities +σ and –σ are separated by a distance‘d’ in air, write the expressions for (1) The electric field at points between the two plates. (2) The potential difference between the plates. (3) The capacitance of the capacitor so formed. c) A 20 µF capacitor is charged by a 30 V d.c. supply and then connected across an uncharged 50 µF capacitor. Calculate (1) the final potential difference across the combination. (2) Initial and final energies. How will you account for the difference in energies? d) The battery remains connected to a parallel plate capacitor and a dielectric slab is inserted between the plates. What will be the effect on its (1) capacity (2) charge (3) potential difference (4) electric field (5) energy stored? e) Define the term electric potential due to a point charge. Calculate the electric potential at the centre of a square of side √2 m, having charges 100 µC, -50µC, and 20µC and-60µC at the four corners of a square. Questions having 5 marks each: a) Explain the principle on which Van-de-Graaff generator operates. Draw a labeled schematic sketch and write briefly its working. A Van-de- Graaff type generator is capable of building up potential difference of 15×106 V. The dielectric strength of the gas surrounding the electrode is 5×107 Vm-1. What is the minimum radius of the spherical shell required? b) An electric dipole is held in a uniform electric field. (1) Show that no translatory force acts on it. (2) Derive an expression for the torque acting on it. (3)The dipole is aligned parallel to the field. Calculate the work done in rotating it through 1800 . ----------------------------------------------------------------------------------------------------- ANURAG TYAGI CLASSES, ATC HOUSE ,10 C-82, VASUNDHRA, GHAZIABAD CALL US @ 09818777622 BRANCH: 6/ 93, SATYAM APPARTMENT, RAJENDR NAGAR,SAHIBABAD. www.anuragtyagiclasses.com
  2. 2. ----------------------------------------------------------------------------------------------------- ANURAG TYAGI CLASSES, ATC HOUSE ,10 C-82, VASUNDHRA, GHAZIABAD CALL US @ 09818777622 BRANCH: 6/ 93, SATYAM APPARTMENT, RAJENDR NAGAR,SAHIBABAD. www.anuragtyagiclasses.com

×