Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Supporting Collaborative Networks in Organizational Settings using an Enterprise 2.0 platform - Netsci 2009


Published on

Presentation of the paper "Supporting Collaborative Networks in Organizational Settings using an Enterprise 2.0 platform" at NETSCI 09 International Workshop and Conference on Complex Networks and their Applications, Venezia, Italy. July 2009
The paper is at

Published in: Education, Technology
  • Be the first to like this

Supporting Collaborative Networks in Organizational Settings using an Enterprise 2.0 platform - Netsci 2009

  1. 1. Supporting CollaborativeNetworks in Organizational Settings using an Enterprise 2.0 platform   Michela Ferron, Paolo Massa and  Francesca Odella FBK Foundation and University of Trento
  2. 2. The SoNet projectSoNet project, an explorative project at FBK Foundation involving the development and the implementation of an open source Enterprise 2.0 web desktop, had its spring 1 year ago. Since its start the project involved both programming and social research and specifically Social Network Research over the developed web desktop, used as a virtual laboratory for research purposes. In particular the group of the developers was motivated by a set of working strategies such as: • always in beta (never release a final version, continuous development) • eat your own dog food • produser (“producer” + “user”) • open source (developed code is released under an open source license. Hence  visible and reusable just fitting the open source license terms)
  3. 3. Taolin: open source Enterprise 2.0 web desktopEnterprise 2.0: Social networking in an enterprise contest Taolin demonstrative screenshotTaolin platform is designed to support the researchers and collaborators at FBK in their working environment and involves a series of elements such as a customizable user profile (on the left), chat, widgets, instruments of users interaction, virtual space for knowledge sharing....
  4. 4. Taolin ( ) Taolin development follows a network strategy: only users enabled have the grants to log into the web platform.Enabled users are called champions. The size (i.e. number of nodes) of the network increases in time together with champions adoption  Currently there are 122 champions on  ~ 400 researchers, technologists and  administrative (started in April, 2008)    Champions: • favorite adoption among  colleagues (word-of-mouth, direct  suggestion) • provide direct feedbacks   Taolin evolved over champions  feedbacks, collected through the web  platform as well as natural data (email,  interviews, surveys) Champions adoption over time 
  5. 5. The reasons for a collaborative platform: TaolinCoordination and networking among people working in the same organization is not a trivial activity. Collaborative web platforms, sometimes termed Enterprise2.0, have a great potential of improving effectiveness inside the working environment.  Taolin is finalized to support this working philosophy and to assist the process of knowledge creation.Hence the idea of collaborate with sociologists and psychologists and monitor with social network analysis and other social enquiry techniques the involvement of the users (motivation and behaviour).
  6. 6. Taolin as a virtual lab: Research Goals The adoption of a communicative technology also modifies the quantity and quality of interactions among users and among users and non users. The procedural analysis of the interactions between Taolin champions and specifically the evolution of the relationships was considered as a relevant source of information for the developers of the platform. In this sense Taolin acts as a virtual research laboratory for a social network research. Social network derived from real users activity performed on Taolin → Actions performed within the web platform are logged and then analyzed. In addition the development of open source automatic analysis tools for this platform (hence analysis could be replied) is another goal of the project.
  7. 7. Networks analyzed • Chat network • Nodes are the champions (people who had the grant to log into Taolin at April, 1st 2009) • Edges are chat messages exchanged between champions • Edges weight is the discrete amount of chat messages between champions • Profile views network • Nodes are the champions (people who had the grant to log into Taolin at April, 1st 2009) • Edges linked two champions each time a champion views another champions profile • Edges weight is the discrete amount of these profile viewsBoth networks are directed and weighted.For both of the considered networks we analyzed a timespan of two months from April, 1st to May, 31st 2009. Profile-views network summary: ● 110 nodes, 760 edges, directed ● Number of components: 51 ● Diameter: 6 ● Density: 0.0634 ● Reciprocity: 0.0872 ● Average path length: 2.4954
  8. 8. Working Hypotheses 1. WH 1: Members of a specific group tend to chat more internally (with other  members of the group) than externally (with users who are NOT members of the  group). Members of a specific group tend to view profile more externally (with  users who are NOT members of the group) than internally (with other members of  the group).2. WH 2: There is a correlation between "organizational centrality" and "network  centrality" in the platform usage. People who are very network central are the one  in the middle as "organizational centrality".  Working hypotheses have been computed and tested using igraph, an open source library for complex network analysis (link:
  9. 9. Testing hypothesis 1Hypothesis 1 has been tested either on profile views network than on chat networks. Both networks are directed graph. We considered only outdegree values for each nodes, taking into account that those networks are weighted. The reason for our hypothesis is that social context may activate imitation dynamics or social control inside ones own group.We excluded from the analysis groups that are too small, i.e. that have less than five champions. To test this hypothesis we computed for every group the “internal” outdegree (number of edges between two members of that group) and the “external” outdegree (number of edges directed outside the group) summing these values for each champions in the group, and then normalizing. Further testing will be performed on indegree values too.
  10. 10. In the chat network users tend to chat more with users of the same group ( internal communications). But some groups - 30.3% of champions  -  behave differently: they relate more with other groups (external communications)
  11. 11. Analyzing the profile views network we discovered a similar behavior: users tend to view profiles of members associated to the same group. 
  12. 12. Testing hypothesis 2 “Organizational centrality” is a value we computed for each champions on her/his seniority (how long she/he works for FBK foundation). We divided all our champions into three organizational classes (OC) representative of the three previously defined seniority groups.Hence we assigned to each node (i.e. to each champion) an attribute containing its own organizational class. Testing was performed both on chat and profile views networks computing average betweenness centrality for each organizational class,removing all the possible loops (champions have the possibility to look at own profile)  
  13. 13. Testing hypothesis 2Hypothesis 2 explicits how champions who recently joined FBK make a larger use of the profile view feature, to know colleagues (people sensemaking) and discover competitors (→ comparative purpose). Champions with higher seniority visit less profile, probably because they  already know the environment and need to keep in touch only with a restricted set of colleagues, linked to their research field. (→ campaigning)On the other hand the chat is more used by people belonging to OC 1, whereas the class with the higher level of seniority use it less than other classes.
  14. 14. Supporting social networks resultsThe analyses put in evidence how communications that takes place among champions (organized in sub-groups) are related both to organizational position and shared adoption of collaborative instruments. Activities such as evaluation of information (profile view), adaptive strategies (widget adoption, internal chat) are also developed according to specific groups preferences and motivations. Content and qualitative analysis of the motivations of the champions (via personal interviews) supported these findings and improved our working hypotheses. 
  15. 15. Future work  • Reorganize data in time sequences → Longitudinal analysis  • Analyse the impact of recruitment criteria (and also, a regime, no more  champions, but all the members of organization). • Expand the datasets with  o Widget adoption (imitation effect) o Cascade behaviors (innovation effect)
  16. 16. Thanks!    Questions?(or - even better - suggestions?)
  17. 17. LicenseCreative CommonsAttribution-ShareAlike 2.5You are free:    * to copy, distribute, display, and perform the work    * to make derivative works    * to make commercial use of the workUnder the following conditions:Attribution. You must attribute the work in the manner specified by the author or licensor.Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one.    * For any reuse or distribution, you must make clear to others the license terms of this work.    * Any of these conditions can be waived if you get permission from the copyright holder.Your fair use and other rights are in no way affected by the above.