Data munging is a crucial task across domains ranging from drug discovery and policy studies to data science. Indeed, it has been reported that data munging accounts for 60% of the time spent in data analysis. Because data munging involves a wide variety of tasks using data from multiple sources, it often becomes difficult to understand how a cleaned dataset was actually produced (i.e. its provenance). In this talk, I discuss our recent work on tracking data provenance within desktop systems, which addresses problems of efficient and fine grained capture. I also describe our work on scalable provence tracking within a triple store/graph database that supports messy web data. Finally, I briefly touch on whether we will move from adhoc data munging approaches to more declarative knowledge representation languages such as Probabilistic Soft Logic.
Presented at Information Sciences Institute - August 13, 2015