Leyes De Lógica

153,195 views

Published on

Principales leyes de lógica

Published in: Education, Technology
12 Comments
28 Likes
Statistics
Notes
No Downloads
Views
Total views
153,195
On SlideShare
0
From Embeds
0
Number of Embeds
28
Actions
Shares
0
Downloads
2,530
Comments
12
Likes
28
Embeds 0
No embeds

No notes for slide

Leyes De Lógica

  1. 1. PRINCIPALES LEYES LÓGICAS Para la simplificación de fórmulas del cálculo proposicional, son de suma utilidad las equivalencias o leyes lógicas. Su demostración se reduce a la confección de las correspondientes tablas de verdad (el resultado final de las mismas, siempre muestra una tautología). En la elaboración de las siguientes leyes, se ha supuesto que p, q y r son proposiciones que pueden asumir cualquier valor de verdad; mientras que V es una proposición verdadera y F es una proposición falsa. 1. Involución o doble negación: ∼( ∼ p ) ⇔ p 2. Idempotencia: • De la conjunción: p ∧ p ⇔ p • De la disyunción: p ∨ p ⇔ p 3. Elemento neutro: • De la conjunción: p ∧ V ⇔ p • De la disyunción: p ∨ F⇔ p 4. Condición de tautología: p ∨ V ⇔ V 5. Condición de antitautología: p ∧ F ⇔ F 6. Negación de tautología: ∼V ⇔ F 7. Negación de antitautología: ∼F ⇔ V 8. Condiciones de negación: • De la conjunción: ( p ∧ ∼ p ) ⇔ F • De la disyunción: ( p ∨ ∼ p ) ⇔ V 9. Conmutatividad: • De la conjunción: p ∧ q ⇔ q ∧ p • De la disyunción: p ∨ q ⇔ q ∨ p 10. Asociatividad: • De la conjunción: ( p ∧ q ) ∧ r ⇔ p ∧ ( q ∧ r ) • De la disyunción: ( p ∨ q ) ∨ r ⇔ p ∨ ( q ∨ r ) 11. Distributividad: • De la conjunción respecto a la disyunción: ( p ∨ q ) ∧ r ⇔ ( p ∧ r ) ∨ ( q ∧ r ) • De la disyunción respecto a la conjunción: ( p ∧ q ) ∨ r ⇔ ( p ∨ r ) ∧ ( q ∨ r ) 12. Leyes de absorción: • De la conjunción respecto a la disyunción: p ∧ ( p ∨ q ) ⇔ p • De la disyunción respecto a la conjunción: p ∨ ( p ∧ q ) ⇔ p 13. Definición de implicación: p → q ⇔ ∼ p ∨ q 14. Definición de equivalencia: p ↔ q ⇔ ( p → q ) ∧ ( q → p ) 15. Leyes de De Morgan: • Negación de la conjunción: ∼ ( p ∧ q ) ⇔ ∼ p ∨ ∼ q • Negación de la disyunción: ∼ ( p ∨ q ) ⇔ ∼ p ∧ ∼ q
  2. 2. RAZONAMIENTO LÓGICO RECORDEMOS: Se llama "argumento" o razonamiento lógico, a una secuencia de proposiciones, en la que una de ellas llamada "conclusión", se obtiene de otras llamadas "premisas". La Lógica tiene como principal objetivo, la determinación de la validez o no de los razonamientos. VALIDEZ DE UN ARGUMENTO. Se dice que un razonamiento es "válido" si, al ser verdaderas sus premisas, lo es también su conclusión; es decir, no puede darse el caso de que las premisas sean verdaderas y la conclusión falsa (sí se diera este caso, se dice que el argumento es "no válido"); entonces, para comprobar si un esquema formal de razonamiento es válido o no, podemos asociar a ese razonamiento, una implicación cuyo antecedente sea la conjunción de las premisas, y el consecuente sea la conclusión. Es decir, un razonamiento deductivo puede escribirse en la forma: Conjunción de premisas → Conclusión Es decir : ( p1 ∧ p2 ∧ ... ∧ pn ) → C ( α ) O en forma abreviada: P → C Esquemáticamente: p1 p2 ... pn C Donde p1, p2, ... , pn , son premisas verdaderas. Así, un razonamiento deductivo es válido, si la implicación mostrada en ( α) es una TAUTOLOGÍA. MÉTODOS DE DEMOSTRACIÓN DE LA VALIDEZ DE UN ARGUMENTO. Directo : Según este método, sabiendo que las premisas del antecedente de (α) son verdaderas, se debe demostrar que la conclusión C también es verdadera; y para ello, se puede utilizar cualquiera de las reglas de inferencias mostradas en la siguiente página. Indirecto : En el método indirecto, se debe incluir ∼C entre las premisas originales de (α). Para que el razonamiento sea válido, es necesario mostrar que, al utilizar las diversas reglas de inferencia, la implicación: ( p1 ∧ p2 ∧ ... ∧ pn ∧ ∼C ) → C, genera una antitautología; es decir, el valor de verdad de esta implicación es falso ( F ). Condicional : Si se pretende demostrar la implicación m → n, se deberá introducir m como nueva premisa; y operando con las restantes, se deberá obtener n para que el razonamiento sea válido. REGLA DE LAS PREMISAS: En la inferencia lógica, cualquier premisa puede reemplazarse por una equivalente; es decir, se pueden utilizar sin problemas, las fórmulas de simplificación ya estudiadas.
  3. 3. REGLAS DE INFERENCIA 1. Adición (LA): Forma esquemática Condicional asociada p p ∨ q p → ( p ∨ q ) 2. simplificación (S): Forma esquemática Condicional asociada p ∧ q p ( p ∧ q ) → p 3. Adjunción (A): Forma esquemática Condicional asociada p q p ∧ q ( p ∧ q ) → ( p ∧ q ) 4. Modus ponendo ponens (MP): Forma esquemática Condicional asociada p → q p q [ ( p → q ) ∧ p ] → q 5. Modus tollendo tollens (MT): Forma esquemática Condicional asociada p → q ∼q ∼p [ ( p → q ) ∧ ∼q ] → ∼p 6. Modus tollendo ponens o silogismo disyuntivo (MTP): Forma esquemática Condicional asociada p ∨ q ∼p q [ ( p ∨ q ) ∧ ∼p ] → q 7. Silogismo hipotético (SH): Forma esquemática Condicional asociada p → q q → r p → r [ ( p → q ) ∧ ( q → r ) ] → ( p → r ) 8. Silogismo disyuntivo o Dilema constructivo (SD): Forma esquemática Condicional asociada p → q r → s p v r q ∨ s [ ( p → q ) ∧ ( r → s ) ∧ ( p ∨ r ) ] → ( q ∨ s ) 9. Dilema destructivo (DD): Forma esquemática Condicional asociada p → q [ ( p → q ) ∧ ( r → s ) ∧ ( ∼q ∨ ∼s ) ] → ( ∼p ∨ ∼r ) r → s ∼q ∨ ∼s ∼p ∨ ∼r Importante: Se comprueba la validez de estas reglas de inferencia, demostrando que la correspondiente condicional asociada es una tautología.

×