Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

The network positions of MRSA risk wards in a hospital system

204 views

Published on

A presentation of this paper:
http://link.springer.com/article/10.1140/epjds/s13688-014-0029-6

Published in: Health & Medicine
  • Be the first to comment

  • Be the first to like this

The network positions of MRSA risk wards in a hospital system

  1. 1. Outbreak R0 Boston, USA (1721) 4.3 Burford (1758) 3.4 Chester (1774) 5.8 Warrington (1773) 4.0-5.3 Paris, France (1766) 4-5 London (1836-1870) ∼ 5 Kosovo (1972) 10.8 Europe (1958-1973) 10-11
  2. 2. Our dataset -  10 years -  308,102 patients -  8,507 wards -  3,185,710 links -  1,261 positive MRSA cases -  21 strains
  3. 3. 0 1000 2000 time, t (days) 0 1 2 3 numberofnodes,N×103 4 5 6 7 8
  4. 4. 0 1 2 3 0 1000 2000 time, t (days) numberoflinks,M×106
  5. 5. –7 –6 –5 –3 0.1 10 10 –4 10 10 10–2 probabilitydensity,p(kin) 10 0 1000 2000 3000 4000 5000 in-degree, kin
  6. 6. –1000 –500 0 500 1000 0 1000 2000 3000 4000 5000 in-degree, kin kout–kin
  7. 7. 0 1 2 3 4 5 6 7 8 1 102 103 105 104 in-degree, k in –4 ×10 relativeaverageprevalence,P
  8. 8. 104 103 102 10–6 10–5 10–4 10–3 10–2 10–1 1 1 0.8 0.6 0.4 0.2 0 in-degree fractionofinfectedwards prevalenceininfectedwards
  9. 9. 0.3 0.35 0.4 50 100–50 0–100 coefficientofdetermination,R2 ∆t (days) outdegee PageRank betweenness weighted betweenness
  10. 10. 1 10 100 1 10 100 1000 number of infected individuals timeofprecenseindata(days)
  11. 11. 1 10 100 1 10 100 1000 number of infected individuals timeofprecenseindata(days)
  12. 12. 1 10 100 1000 1 10 100 number of infected individuals numberofinfectedwards
  13. 13. 25 50 75 100 –200 –100 100 2000 0 t (days) percentagehospitalized
  14. 14. infected control 950 1000 1050 1100 –200 –100 0 100 200 averageout-degree t (days)
  15. 15. Summary -  Even though the hospital system is hierarchically organized, the ward network is too random to predict risk wards efficiently. -  In-flow better predictor than static measures. -  There is a detectable response— patients move to low-degree wards.

×