Энд дарж


Published on

  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Энд дарж

  1. 1. Note: The following texts are for the master students who are preparing for the English state exam. The texts will be followed by reading comprehension and vocabulary exercises. Also will be added speaking and grammar tasks in the exam. Texts are for the schools: 1. School of Food and Biotechnology (10) 2. School of Power Engineering (10) 3. School of Industrial Technology and Design (10) 4. School of Computer Science and Management School (Computer 10, Management 10) 5. School of Geology and Petroleum Engineering (10) 6. School of Mechanical Engineering (10) 7. School of Mathematics (10) 8. School of Materials Science (10) 9. School of Telecommunication and Information Technology (10) 10. School of Civil Engineering and Architecture (10) 11. School of Social Technology (10) 13. School of Mining Engineering (10) Total 130 texts School of Food and Biotechnology Text 1 WHY WE NEED FOOD All foods – from apples and pears to whole meal bread and ice cream – contain two main categories of nutrients, the macronutrients and the micronutrients. Macronutrients are required in large amount for healthy growth and development; they form the basis of every diet and they provide energy for all the body’s everyday functions and activities. These nutrients are further categorized as being primarily fats, proteins, carbohydrates, or fiber, although most foods contain all of them in varying proportions. Vitamins and minerals make up the micronutrients, so called because they are found in tiny amount in foods. Unlike macronutrients, vitamins and minerals do not provide energy and are needed in small amounts, but they play a critical role in the normal functioning of the body and digestive processes, to ensure good health. Take a look at what you eat in an average day: the chances are that your diet includes a wide variety of foods from all the basic food groups, and that it provides a range of essential nutrients. Your breakfast, for example may be rich in carbohydrates and fiber from cereal or wholemeal toast; you may have a mixed salad for your lunch, and grilled fish and vegetables for dinner providing proteins and a variety of vitamins and minerals. Whatever you eat at individual meals, your diet is made up of foods from the five basic food groups. In addition to supplying nutrients, food provides your body with energy. Approximately half to two-thirds of the energy we obtain from food goes to support the body’s basic, involuntary functions, which are the activities that are performed without any conscious control, such as heart rate, maintaining breathing, and body temperature. The minimum energy needed to carry out
  2. 2. these functions is determined by your basal metabolic rate which is your baseline rate of metabolism measured when the body is at rest. You also expand energy through conscious, voluntary activities, which range from the sedentary to the strenuous. All your body’s energy needs are met from your body’s energy stores. Text 2 FOOD SOURCES Almost all foods are of plant or animal origin, although there are some exceptions. Foods not coming from animal or plant sources include various edible fungi, including mushrooms. Fungi and ambient bacteria are used in the preparation of fermented and pickled foods such as leavened bread, wine, beer, cheese, pickles, and yogurt. Additionally, salt is often eaten as a flavoring or preservative, and baking soda is used in food preparation. Both of these are inorganic substances, as is water, an important part of human diet. Plants: Many plants or plant parts are eaten as food. There are around 2,000 plant species which are cultivated for food, and many have several distinct cultivars. Plant-based foods can be classified as with the nutrients necessary for the plant’s initial growth. Because of this, seeds are often packed with energy, and are good sources of food for animals, including humans. Fruits are the ripened extensions of plants, including the seeds within. Fruits are made attractive to animals so that animals will eat the fruits and excrete the seeds over long distances. Fruits, therefore, make up a significant part of the diets of most cultures. Some fruits, such as pumpkin and eggplant, are eaten as vegetables. Vegetables are a second type of plant matter eaten as food. These include root vegetables (such as potatoes and carrots), leaf vegetables (such as spinach and lettuce), stem vegetables (such as bamboo shoots and asparagus), and in Florence vegetables (such as globe artichokes and broccoli). Many herbs and spices are highly- flavorful vegetables. Animals: can be used as food either directly or indirectly by the products they produce. Meat is an example of a direct product taken from an animal, which comes from either muscle systems or from organ. Food products produced by animals include milk produced by mammals, which in many cultures is drunk or processed into dairy products such as cheese or butter. Preparation: While some food can be eaten raw, many foods undergo some form of preparation for reasons of safety, palatability, or flavor. At the simplest level this may involve washing, cutting, trimming or adding other foods or ingredients, such as spices. It may also involve mixing, heating or cooling, pressure cooking, fermentation, or combination with other food. In a home, most food preparation takes place in a kitchen. A meal is made up of food which is prepared to be eaten at a specific time and place. The preparation of animal-based food will usually involve slaughter, evisceration, hanging, portioning and rendering. In developed countries, this is usually done outside the home in slaughterhouses which are used to process animals mass for meat production. On the local level a butcher may commonly break down larger animal meat into smaller manageable cuts and pre-wrapped for commercial sale or wrapped to order in butcher paper. In addition fish and seafood may be fabricated into smaller cuts by a fish monger at the local level. However fish butchery may be done on board a fishing vessel and quick-froze for preservation of quality. Text 3
  3. 3. VITAMINS These are naturally occurring chemicals essential for health. For many of us, the word “vitamin” conjures up the shelves of the local chemist, or perhaps the fortified cereals that we eat for breakfast each morning. But these chemical substances occur naturally, in minute quantities, in most of the foods that we eat on food sources to meet our vitamin needs. Although vitamins contain no calories, they are essential for normal growth and development, and many chemical reactions in the body. Vitamins are necessary for the food to use the calories provided by the food that we eat and help process proteins carbohydrates, and fats. Vitamins are also involved in building cells, tissues, and organs- vitamin C, for example, helps produce healthy skin. Vitamins are classified as fat-soluble or water-soluble, based on how they are absorbed by the body. Vitamins A, D, E and K are fat-soluble vitamins include vitamin C and the B-complex vitamins. Research has shown that foods rich in antioxidants are particularly beneficial for health. Antioxidants include vitamins A, C, and E, and they are found in a wide range of vegetables and fruits. For the most part, we rely on food sources or supplements to meet our vitamin and mineral requirements. However, there are a few exceptions to this; for example, gut flora (the micro-organisms in the intestinal tract) produce vitamin K. Vitamin D is also converted by the skin into a form that the body can use with the help of ultraviolet light in sun light. Because your body makes only a few vitamins itself, a balanced diet is very important – it ensures that your body receives the sufficient amount of vitamins, as well as minerals, that it requires each day. The key to getting enough vitamins in your diet is to eat a variety of foods. This is because while some nutrients tend to be found in substantial amounts in certain groups of foods, such as vitamin C in fruits and vegetables, other nutrients, such as the B vitamins, are found in smaller amounts in a wide range of foods. No one food contains an adequate amount of all the vitamins that you require daily, but if you make healthy choices from a variety of foods, you are less likely to miss out on any one particular nutrient. Most people buy the same foods each week, which can result in a limited range of vitamin. For example eat two apricots instead of one orange, for a boost of vitamin A. Or choose salmon on your bagel instead of your usual cream cheese, to boost your intake of vitamin D. Buying vegetables and fruits in season also helps to vary your shopping choices. Text 4 FAT Part of a group of compounds known as lipids, and composed of the elements carbon oxygen, and hydrogen, fats are found mainly in plants, fish, and meats. They form a major part of all cell membranes in the body and play a vital role in the absorption of the fat –soluble vitamins A,D,E, and K from foods. Fat gives the body insulation, helping to maintain a constant temperature against extremes of hot and cold. It is also serves as an important source of energy. Lipids and lipoproteins: In addition to fats, lipids include phospholipids, triglycerides, waxes, and sterols. The most well-known sterol is cholesterols which circulate in the blood attached to compound known as lipoproteins. Low-density lipoproteins (LDL), which carry cholesterol to tissues and organs, are often called “bad” cholesterol, since high levels in the blood are
  4. 4. associated with an increased risk of cardiovascular disease. High-density lipoproteins (HDL), which carry cholesterol away from the tissues and back to the liver, are known as “good” cholesterol, since high levels decrease the risk of cardiovascular disease. Fats are also referred to as good or bad according to whether their chemical bonds are “saturated” with hydrogen. Unsaturated fats are further classified into mono-and polyunsaturates, which differ in their nutritional makeup. Avoid saturated fats: With the exception of palm and coconut oils, most saturated fats are derived from animal and dairy products. Red meat and meat products such as sausages are major sources of saturated fat in the diet, along with whole milk and its products, such as cheese, cream, and ice cream. Excessive intake of saturated fats and trans fatty acids are now believed to increase the risk of cardiovascular disease by raising the unhealthy LDL and triglycerides in the blood, without lowering healthy HDL levels. Polyunsaturated fats consist of two major types: omega – 3 fatty acids, founds in fish oils and omega -6 fatty acids, found in vegetable oils such as sunflower, rapeseed, and corn. Your diet should include both types. Text 5 MINERALS These are substances originating in rocks and metal ores. Many minerals are essential for health. We obtain them by eating plants, which take up minerals from the soil, by eating animals that have eaten plants and, to some extent, by drinking water that contains minerals. Minerals are needed by the body in only tiny quantities and are termed macrominerals or microminerals, according to the percentage of your total body weight they constitute and how much you need in your daily diet. Macrominerals make up more than 0.005 percent of the body’s weight and you need to be getting more than 100mg of these daily. They include calcium, magnesium, phosphorous, potassium, sodium, and sulphur. Microminerals, which are also known as trace elements, make up less than 0.005 percent of the body’s weight and you need less than 100 mg daily. Those microminerals with identified roles in health include chromium, copper, fluoride, iodine, iron, selenium, and zinc. Minerals work together in making and breaking down body tissues and breaking down body tissues and in regulating metabolism-the chemical reactions constantly occurring in the body. Bone, for example consists of a framework of the protein collagen in which most of the body’s calcium, phosphorus, and magnesium are deposited. Minerals are stored in your bones so that in the event of a dietary deficiency, some of the minerals can be released from the bones for the body’s needs. The teeth also contain significant amount of the minerals calcium and phosphorus. Minerals are found in many key molecules in the body and are involved in essential chemical reaction. For example, calcium activates a digestive enzyme that helps to break down fats; copper is needed to incorporate iron into hemoglobin.
  5. 5. No single food is the best source of all of the minerals, but eating a variety of foods usually ensures that you get enough of these important nutrients. In addition, the body can store minerals for future use when intake might be low. Animal foods are generally the best sources of minerals because they tend to contain minerals in the proportions our bodies need. Fruits and vegetables can be useful sources of some minerals such as potassium. Mineral water can be a source of minerals including magnesium. Minerals are often lost when a food is processed. For example, potassium, iron, and chromium are removed from whole grains during the refining process. Minerals differ from vitamins in that they are not damaged by heat or light, that but some can be lost in the water used for cooking. To help preserve the mineral content of vegetables, avoid boiling them. Instead, steam them if possible or use the microwave, and keep the cooking time short. If you do boil, wait until the water is bubbling before you add the vegetables: if you put them in cold water and then bring it to the boil, more nutrients will be lost. Text 6 FRUITS FOR HEALTH Fruits – naturally sweet, colourful, high in vitamins and fibre, and low in calories and fat – are the ideal snack. Scientific research shown that a modest increase of one or two servings of fruit per day can dramatically reduce your susceptibility to many diseases. Rich in antioxidants: Vitamin C and phytochemicals, including antioxidants, abound in fruit. Antioxidants destroy harmful substances in the body, called free radicals, which can build up and cause cancer. Of particular interest are two types of phytochemicals – flavonoids and polyphenols – which together have a powerful antioxidant quality. In addition, other phytochemicals in fruit have been found to be anti-allergenic, anti- carcinogenic, anti- viral, and anti- inflammatory. We truly do have a reason to say that an apple (or any fruit) a day keeps the doctor away. Benefits of different fruits: Fruits are rich in vitamins and minerals, especially vitamin C and potassium, and in fibre. Eat a variety to reap their individual nutritional benefits. Apples: The skin of this refreshing fruit is an excellent source of fibre. A medium apple has about 47 calories. Apricots: Due to a short life span once picked, most apricots are dried or canned. A fresh apricot has about 12 calories. Bananas: Technically a herb and hot a fruit, a medium banana (100g) contains 95 calories and is loaded with vitamins and minerals. Blueberries: These delicious fruits are rich in antioxidants and help prevent urinary tract infections. There are about 50 calories in 80g blueberries. Grapes: 80g contains 48 calories, with vitamins A and C and minerals. Kiwi fruit: A medium kiwi fruit 60g has 29 calories and offers a good range of vitamins. Melon: This is rich in a form of carotene that is known to fight cancer. A slice of melon (100g) has 24 calories. Peaches: A medium peach 100g has about 33 calories, and offers vitamin C and D plus potassium. Pears: A medium peach (100) has about 33 calories, and offers vitamins C and D plus potassium. Pineapple: This fruit contains a potent enzyme, bromelain that has been used to aid digestion, reduce inflammation, and help cardiovascular disease. A large size 80g has 33 calories.
  6. 6. Plums: A medium plum 55g has 20calories. Plums are a good source of vitamins C and offer potassium too. Raisins and sultanas: Being so rich in sugar, these dried fruits are an excellent source of energy: 1 tablespoon contains 82 calories. Raspberries: There are nearly 1000 varieties of raspberries. They provide 20 calories per 80g. Watermelon: A slice 200g of this refreshing melon contains 62 calories plus vitamin C and some carotenoids. Text 7 THE BENEFITS OF DAIRY PRODUCTS Milk and its products are excellent sources of protein, vitamins, and minerals – most particularly of calcium, which is essential for healthy bones and teeth. The varieties of milk: Although cow’s milk is the most common in the UK, sheep’s and goat’s milk are available too, as are plant- based substitutes such as soya milk and rice milk. Cow’s milk is processed in a variety of ways to create products that vary in nutritional content and storage capability. Fat content is one of the most important distinctions, varying from whole or full-fat milk (which contains 3.9 percent fat) to through semi-skimmed (1.6 percent) to skimmed. Special milks are available for people with specific dietary needs, such as lactose intolerance. Milk is also available in UHT (ultra –heat-treated), dried, evaporated, and condensed forms, which are useful for cooking. Cheese is in concentrated form, which is why cheese is such a great source of the important nutrients found in milk. It’s also the reason why cheese has such high saturated fat content. As with milk, the solution is simply to opt for reduced fat and low –fat varieties, which contain the vital nutrients while limiting unhealthy saturated fat. Yogurt is another milk product, made by treating milk with a bacterial culture. Yogurt is rich in protein and vitamin B2, and contains living bacteria that are healthy for your digestive system. It is available in many different types and, as with other milk products, the lower fat varieties are the healthier choice. Choosing the right milk: Most milk consumed in the world is cow’s milk. However, other milks are available as healthy alternatives. Cow’s milk: Whole or full-fat milk has 7.8 g of fat per 200ml serving and 132 calories. Calcium content is slightly less than that in lower fat varieties. Goat’s milk: With slightly less lactose than cow’s milk, goat’s milk contains more vitamins A, B6, and calcium, potassium, copper, and selenium. Full-fat goat’s milk has about the same amount of fat as cow’s milk, but there are skimmed versions. Sheep’s milk: Rich in protein, fat, and minerals, sheep’s milk is not widely available. It is most often found made into cheese and yogurt. Soya milk: This is good for people with lactose intolerance as it doesn’t contain any lactose or casein. A 200ml glass contains almost 6.0g of protein, 4.8g of fat, no cholesterol, and 86 calories. Soya milk is not a good natural source of calcium or vitamin B12, so choose a fortified variety. Rice milk: This is a good substitute for semi-skimmed cow’s milk for people who have allergies or who are lactose-intolerant. Oat milk: Lactose- and cholesterol-free, and low in fat. Choose varieties fortified with calcium and vitamin D.
  7. 7. Almond milk: Lactose-free and low in saturated fat, almond milk is also very low in sugar. Text 8 FAST FOOD IN AMERICA The modern history of fast-food in America began on July 7, 1912 with the opening of a fast food restaurant called the Automat in New York. The Automat was a cafeteria with its prepared foods behind small glass windows and coin-operated slots. Joseph Horn and Frank Hardart had already opened an Automat in Philadelphia, but their “Automat” at Broadway and 13th Street, in New York City, created a sensation. Numerous Automat restaurants were quickly built around the country to deal with the demand. Automats remained extremely popular throughout the 1920’s and 1930’s. The company also popularized the notion of “take-out” food, with their slogan “Less work for Mother”. The American company White Castle is generally credited with opening the second fast-food outlet in Wichita, Kansas in 1921, selling hamburgers for five cents apiece. Among its innovations, the company allowed customers to see the food being prepared. White Castle later added five holes to each beef patty to increase its surface area and speed cooking times. White Castle was successful from its inception and spawned numerous competitors. McDonald’s McDonald’s, the largest fast-food chain in the world and the brand most associated with the term “fast food,” was founded as a barbecue drive-in in 1940 by Dick and Mac McDonald. After discovering that most of their profits came from hamburgers, the brothers closed their restaurant for three months and reopened it in 1948 as a walk-up stand offering a simple menu of hamburgers, French fries, shakes, coffee, and Coca-Cola, served in disposable paper wrapping. As a result, they were able to produce hamburgers and fries constantly, without waiting for customer orders, and could serve them immediately; hamburgers cost 15 cents, about half the price at a typical diner. Their streamlined production method, which they named the “Speeded Service System” was influenced by the production line innovations of Henry Ford. The McDonalds’ stand was the milkshake machine company’s biggest customer and a milkshake salesman named Ray Kroc traveled to California to discover the secret to their high-volume burger-and-shake operation. Kroc thought he could expand their concept, eventually buying the McDonalds’ operation outright in 1961 with the goal of making cheap, ready-to-go hamburgers, French fries and milkshakes a nationwide business. Kroc was the mastermind behind the rise of McDonald’s as a national chain. The first part of his plan was to promote cleanliness in his restaurants. Kroc often took part at his own Des Plaines, Illinois, outlet by hosing down the garbage cans and scraping gum off the cement. Kroc also added great swaths of glass which enabled the customer to view the food preparation. This was very important to the American public which became quite germ conscious. A clean atmosphere was only part of Kroc’s grander plan which separated McDonald’s from the rest of the competition and attributes to their great success. Kroc envisioned making his restaurants appeal to families of suburbs. “Where White Tower (one of the original fast food restaurants) had tied hamburgers to public transportation and the workingman...McDonald’s tied hamburgers to the car, children, and the family. Text 9 FOOD FOR DIFFERENT CULTURE
  8. 8. Have you ever stopped to really think about what you and your family eats every day and why? Have you ever stopped to think what other people eat? In the movie Indiana Jones the Temple of Doom, there are two scene in which the two lead characters are offered meals from a different culture. One meal, meant to break the ice consisted of insects. The second meal was a lavish banquet that featured such delicacies as roasted beetles, live snake, eyeball soup, and chilled monkey brains for dessert. Some cultures eat such things as vipers and rattlesnakes, bush rats, dog meat, horsemeat bats, animal heart, liver, eyes, and insects of all sorts. Sound good? The manner in which food is selected, prepared, presented and eaten often differs by culture. One man’s pet is another person‘s delicacy– dog, anyone? Americans love beef, yet it is forbidden to Hindus, while the forbidden food in Moslem and Jewish cultures is normally pork, eaten extensively by the Chinese and others. In large cosmopolitan cities, restaurants often cater to diverse diets and offer “national” dishes to meet varying cultural tastes. Feeding habits also differ, and the range goes from hands and chopsticks to fill sets of cutlery. Even when cultures use a utensil such as a fork, one can distinguish a European from an American by which hand holds the implement. Subcultures, too, can be analyzed from this perspective, such as the executive dinning room, the soldiers mess …or the ladies tea room, and the vegetarian’s restaurant. Often the different among cultures in the foods they eat are related to the difference in geography and local resources. People who live near water (the sea, lakes, and rivers) tend to eat more fish and crustaceans. People who live in colder climates tend to eat heavier fatty foods. However with the development of a global economy, food boundaries and difference are beginning to dissipate: McDonalds is now on every continent except Antarctica, and tofu and yogurt are served all over the world. Text 10 FISH AND SHELLFISH Eating fish twice a week reduces your risk of heart disease. Low in both total and saturated fat content, fish and shellfish are excellent sources of protein and vitamins, so you should try to include them in your diet at least twice a week. Fish and shellfish are high in important nutrients, such as vitamins B1, B6, niacin, and D and some are rich in omega – 3 fatty acids. Benefits of fish: Ever since it was discovered that people such as Inuite, who eat a diet based on fish, have a low incidence of cardiovascular disease, the link between eating fish and reduced risk of heart attack has been a hot topic. Shellfish is healthy: This food source has acquired a bad reputation because some shellfish contain a high level of cholesterol. However we now know that cholesterol levels in the blood are related to the intake of saturated fat rather than to eating cholesterol – rich foods. When handled properly, fish and shellfish are as safe to eat as any other source of protein. Most harmful microbes found in fish are destroyed during cooking. Choosing fish for omega – fatty acids: Oil rich fish such as sardines, mackerel, and salmon contain healthy fat called omega-3 fatty acids. This fat is believed to reduce the risk of your developing cardiovascular disease by increasing the levels of “good” cholesterol in the body and lowering the levels of “bad” cholesterol and triglycerides. All fish and shellfish contain some omega -3 fatty acids, but the amount can vary. Generally, the fattier fish contain more than the leaner fish, but the proportion of omega-3 fatty acids can vary considerably between fish species.
  9. 9. School of Power Engineering Text 1 The Main Components of Electric Circuits The main components of any circuits are devices that produce and utilize electric energy. They are: 1. Power sources 2. Utilizing loads 3. Connecting conductors. The most common power sources are electric generators and primary cells. Electric generators convert chemical energy into electric energy. Loads include electric heaters, electric motors, incandescent lamps, etc. Motors convert electric energy into mechanical, incandescent lamps and heaters convert electric energy into light and heat. Utilizing devices or loads convert electric energy into thermal, mechanical or chemical energy. Electric powers is delivered from power sources to loads by electric wires. According to their material, wires can be aluminium, copper, steel, etc. In addition to these three main components, electric circuits use different types of switches, protection devices (relays and fuses), and meters (ammeters, voltmeters, wattmeters, etc.). The types of electrical circuits associated with electrical power production or power conversion systems are either resistive, inductive, or capacitive. Most system have some combination of each of these three circuit types. These circuit elements are also types of loads. A load is a part of a circuit that converts one type of energy into another type. A resistive load converts electrical energy into heat energy. In our discussion of electrical circuits, we will primarily consider alternating-current (ac) systems as the vast majority of the electrical power which is produced is alternating current. Direct-current (dc) systems must be studied in terms of electrical power conversation. Text 2 Transmission Lines After electricity is produced at power plants it has to get to the customers that use the electricity. Our cities, towns, states and the entire country are criss-crossed with power lines that “carry” the electricity. A power system is an interconnection of electric power stations by high voltage power transmission lines. Nowadays the electricity is transmitted over long distances and the length of transmitting power lines varies from area to area. A wire system is termed a power line in case it has no parallel branches and a power network in case it has parallel branches. According to their functions, power lines and networks are subdivided into transmission and distribution lines. Transmission lines serve to deliver power form a station to distribution centres. Distribution lines deliver power from distribution centres to the loads.Lines are also classed into: 1. overhead 2. indoor 3. cable (underground) Overhead lines comprise line conductors, insulators, and supports. The conductors are attached to the insulators, and these are attached to the supports. The greater the offered resistance the higher are the heating losses in the conducting wires. The losses can be reduced simply by using a step down transformer.
  10. 10. Indoor lines include conductors, cords, and buses. A conductor may comprise one wire or a combination of bare wire not insulated from one another. They deliver electric current to the consumer. As to underground lines, they are suitable for urban areas. Accordingly, they are used in cities and in the areas of industrial enterprises. Text 3 Electric Power Consumers and Power System An electric power consumer is an enterprise utilizing electric power. Its operating characteristics vary during the hours of day, days and nights, days of week and seasons. All electric power consumers are divided into groups with common load characteristics. To the first group belong municipal consumers with a predominant lighting load: dwelling houses, hospitals, theatres, street lighting system, mines, etc. To the second group belong industrial consumers with a predominant power load (electric motors): industrial plants, mines, etc. To the third group belongs transport, for example, electrified railways. The fourth consists of agricultural consumers, for example, electrotractors. The operating load conditions of each group are determined by the load graph. The load graph shows the consumption of power during different periods of day, month and year. On the load graph the time of the maximum loads and minimum loads is given. Large industrial areas with cities are supplied from electric networks fed by electric power plants. These plants are interconnected for operation in parallel and located in different parts of the given area. They may include some large thermal and hydroelectric power plants. The sum total of the electric power plants, the networks that interconnect them and the power utilizing devices of the consumers, is called a power system. All the components of a power system, are interrelated by the common processes of protection, distribution, and consumption of both electric and heat power. In a power system, all the parallelly operating plants take part in carrying the total load of all the consumers supplied by the given system. Text 4 Nuclear Energy: Solution to Global Climate Change The issue of global climate has been widely reported on, and was recently covered in the PBC documentary, “What’s Up With the Weather?” nuclear power plants do not produce carbon dioxide emissions, which are a major contributor to the greenhouse effect and global climate change. In fact, nuclear energy releases no emissions of any kind, so they also do not contribute to local air pollution problems. The US Representative to UN Organizations in Vienna, Ambassador John B. Rich III, has declared that “only nuclear energy can help meet the world’s energy needs without threatening the environment”. Worldwide, reliance on nuclear has reduced greenhouse gas emissions by almost metric tons annually. The herring: the “problem” of nuclear waste. The entire nuclear power industry generates approximately 2.000 tons of solid waste annually in the United States. All technical and safely issues have been resolved in creation of high-level waste repository in the US; politics are the only reason we do not have one. In comparison, coal fired power produced 100.000.000 tons of ash and sludge annually, and this ash is laced with poisons such as mercury and nitric oxide. Industry generates 38.000.000 tons if hazardous waste, and the kind they make will be with us forever, not decaying away, this waste does not receive nearly the care and attention in disposal that
  11. 11. radioactive waste does. This is not to say that radioactive waste is more dangerous; it is not. We should be probably more careful with other industrial wastes. Text 5 Power Engineering Power engineering is a science which studies all kinds of energy. It is a very young science and it is applied in very branch of industry. Our industrial progress is based on power, power for our machines, industrial plants, heating and lighting systems transport and communication. Indeed, there is hardly a sphere of our life where power is not required. We may trace the rise of civilization by man’s ability to generate power. Power engineering comprises different sciences and branches of sciences such as: mathematics, machine details, strength of materials, electrical engineering, hydrolics, heat transfer, electrical units, gas and steam turbines, atomic reactors, solar installations and many others. Power supply is one of the major criteria of a country industrial might. Without an ample power supply, no branch of national economy can develop rapidly or at all effectively. Industrial process depends on power. For centuries coal, oil and water were its main sources. In the 19th century they were used to produce steam. In the first half of the 20 th century- electricity. Our time is the age of automatic power. A new fuel and a new source of power is put to the service of man. Today we obtain power from many sources: one of them is coal, oil, natural gas, to produce the best that operates internal and external combustion engines. The other source is falling water in our hydro-electric power stations, where water turbines operate electric generators, the next is nuclear reactor which produces heat by means of atomic fission. We also use the energy of tides, subterranean heat and solar energy to produce electricity. Power engineering includes such forms of energy as: solar, atomic, thermal, electric energy from combustion of coal oil, shale and gas, steam power, wind etc. Text 6 Energy Source The sources from which energy can be obtained to provide heat, light, and power. Energy sources have progressed from human and animal power to fossil fuels and radioactive elements, and water, wind, and solar power. Industrial society was based on the substitution of fossil fuels for human and animal power. Future generations will have to increasingly use solar energy and nuclear power as the finite reserves of fossil fuels become exhausted. The principal fossil fuels are coal, lignite, petroleum, and natural gas – all of which were formed millions of years ago. Fossil fuels which have potential for future use are oil shale and tar sands. Oil shale deposits have been found in many areas of the United States, but the only deposits of sufficient potential oil content considered as near-them potential resources are those of the Green River Formation in Colorado., Wyoming, and Utah. Tar sands represent the largest known world supply of liquid hydrocarbons. Extensive resources are located throughout the world, but primarily in the Western Hemisphere. The best- known deposit is the Athabasca tar sands in northeastern Alberta, Canada. Nonfuel sources of energy include wastes, water, wind, geothermal deposits, biomass, and solar heat. At the present time the nonfuel sources contribute very little energy, but as the fossil fuels
  12. 12. become depleted, the nonfuel sources and fission and fusion sources will become of greater importance since they are renewable. Nuclear power based on the fission of uranium, thorium, and plutonium, and fusion power based on the forcing together of the nuclei of two light atoms, such as deuterium, tritium, or helium 3, could become principal sources of energy in the 21st century. All sources of energy put together is energy locked up in nuclei of atoms of matter itself. It has been known for at least a century. It is called nuclear energy. Many atomic power plants for producing electric energy were built in many countries of the world. There are great possibilities of using nuclear energy for world. A number of countries are working at the development and construction of various kinds of locomotive, airplanes and other means of transport. Many atomic powered ships have been already built. Nuclear energy is and will be used in medicine, and in many spheres of life where the atom may find useful application. Text 7 Power Plants Electric power is generated at electric power plants. The main unit of an electric power plant comprises a prime mover and the generator which it rotates. In order to actuate the prime mover energy is required. Many different sources of energy are in use nowadays. To these sources belong heat obtained by burning fuels, pressure due to the flow prime mover, power plants are divided into groups. Thermal, hydraulic (water/power) and wind plants are classed as: • Steam turbine plants, where steam turbines serve as prime movers. The main generating units at steam turbine plants belong to the modern, high-capacity class of power plants. • Steam engine plants, in which the prime mover is a piston-type steam engine. Nowadays no large generating plants of industrial importance are constructed with such prime movers. They are used only for local power supply. • Diesel-engine plants; in them diesel internal combustion engines are installed. These plants are also of small capacity, they are employed for local power supply. • Hydroelectric power plants employ water turbines as prime movers. Therefore they are called hydroturbine plants. Their main generating units is the hydrogenerator. • Modern wind-electric power plants utilize various turbines; these plants as well as the small capacity hydroelectric power plants are widely used in agriculture. • Hydroelectric stations deliver power from great rivers, but still about 80 percent of the required electric power is produced in thermal, electrical plants. These plants burn coal, gas, peat or shale to make steam. Text 8 An Electric Motor An electric motor is a device using electrical energy to produce mechanical energy. Electric motors are everywhere! In your house, almost every mechanical movement is caused by an AC (alternating current) or DC (direct current) electric motor. In an electric motor an electric current and magnetic field produce a turning movement. This can drive all sorts of machines, from wrist- watches to trains.
  13. 13. An electric current running through a wire produces a magnetic field around the wire. If an electric current flows around a loop of wire with a bar of iron through it, the iron becomes magnetized. If you put two magnets close together, like poles-for example, two north poles – repel each other, and unlike poles attract each other. In a simple electric motor, a piece of iron with loops of wire round it, called an armature, is placed between the north and south poles of a stationary magnet, known as the field magnet when electricity flows around the armature wire, the iron becomes an electromagnet. The attraction and repulsion between the poles of this armature magnet and the poles of the field magnet make the armature turn. As a result, its north pole is close to the south pole of the field magnet. Then the current is reserved so the north pole of the armature magnet becomes the south pole. Once again, the attraction and repulsion between it and the field magnet make it turn. The armature continues turning as long as the direction of the current, and therefore its magnetic poles, keeps being reversed. To reverse the direction of the current, the ends of the armature wire are connected to different halves of a split ring called a commutator. Current flows to and from the commutator through small carbon blocks called brushes. As the armature turns, first one half of the commutator comes into contact with the brush delivering the current, and then the other, so the direction of the current keeps being reversed. Text 9 Portable Generator A portable generator can provide electricity to power lights and other appliances no matter how far you are from the mains. It works by turning the movement of a piston into electrical energy. Although most electricity comes from power stations, power can also be generated by far smaller means. Nowadays, electricity generators can be small enough to hold in the hand. Portable generators are made up of two main parts: an engine, which powers the equipment, and an alternator, which converts motion into electricity. The engine which runs on petrol, is started by pulling a cord. This creates a spark inside which ignites the fuel mixture. In a typical four-stroke engine, when the piston descends, the air inlet valve opens and a mixture of air and petrol is sucked in through a carburetor. The valve closes, the piston rises on the compression stroke and a spark within the upper chamber ignites the mixture. This mini- explosion pushes the piston back down, and as it rises again the fumes formed by the ignition are forced out through the exhaust valve. This cycle is repeated many times per second. The moving piston makes the crankshaft rotate at great speed. The crankshaft extends directly to an alternator, which consists of two main sets of windings-coils of insulated copper wire wound closely around an iron core. One set, called stator windings, is in a fixed position and shaped like a broad ring. Other set, the armature windings, is
  14. 14. wound on the rotor which is fixed to the rotating crankshaft. The rotor makes about 3.000 revolutions per minute. Text 10 Transformers Faraday’s experiments of August 29, 1831, gave us the principle of the electric transformer, without which the later discoveries of that fateful year could have little real practical application. For to convey electric current over long distances, say to supply a town, or feed an electric railway, it is necessary to generate it at a very high voltage, or force. By means of transformers based on Faraday’s induction coil discovery, it is simple for a current from the grid or direct from a power-station of say 132.000 volts to be stepped down for the electric train to 600 volts and for household use to 240 volts. Smaller transformers in individual prices of electrical equipment, say a shaver or radio, may step the current down still further for special purposes. Similarly, currents may be stepped up in voltage, if required, by the same device. The procedure is quite simple. The current is fed into the transformer across the primary, of input coil, which corresponds to Faraday’s right-hand coil on his induction ring. The resultant induced current is taken from the secondary, of output coil, which corresponds to Faraday’s left-hand coil, the voltage will be stepped down. So the two related discoveries of 1831 provided not only the means of making electricity easily and cheaply, on as large a scale as required, without any cumbersome batteries, but also the way of using it in a safe and practical way. School of Industrial Technology and Design Text 1 Fashion Design Fashion design is the applied art dedicated to clothing and lifestyle accessories created within the cultural and social influences of a specific time. It is considered to have a built in obsolescence usually of one to two seasons. A season is defined as either autumn/winter or spring/summer. Nowadays, even though French, British, Japanese and American fashion are the top in style, Italian fashion is considered the most important and elegant in design and it has led the world of fashion since the 1970s and '80s. Fashion designers can work in a number of ways. Fashion designers may work full-time for one Fashion Company, known as in-house designers, which owns the designs. They may work alone or as part of a team. Freelance designers works for themselves, and sell their designs to fashion houses, directly to shops, or to clothing manufacturers. The garments bear the buyer's label. Some fashion designers set up their own labels, under which their designs are marketed. Some fashion designers are self-employed and design for individual clients. Other high-fashion designers cater to specialty stores or high-fashion department stores. These designers create original garments, as well as those that follow established fashion trends. Most fashion designers,
  15. 15. however, work for apparel manufacturers, creating designs of men’s, women’s, and children’s fashions for the mass market. Large designer brands which have a 'name' as their brand such as Calvin Klein, Gucci, Ralph Lauren, or Chanel are likely to be designed by a team of individual designers under the direction of a designer director. Designing a collection and garment: A fashion collection is something that designers put together each season to show their idea of new trends in both their high end couture range as well as their mass market range. Fashion designers must take numerous matters into account when designing clothes for a collection, including consistency of theme and style. They will also take into account views of existing customers, previous fashions and styles of competitors, and anticipated fashion trends, as well as the season for the collection of fashion. Fashion designers work in different ways. Some sketch their ideas on paper, while others drape fabric on a dress form. When a designer is completely satisfied with the fit of the toile (or muslin), he or she will consult a professional pattern maker who then makes the finished, working version of the pattern out of card. The pattern maker's job is very precise and painstaking. The fit of the finished garment depends on their accuracy. Finally, a sample garment is made up and tested on a model. Text 2 Ready to Wear Fashion design is generally considered to have started in the 19th century with Charles Frederick Worth who was the first designer to have his label sewn into the garments that he created. Before the former draper set up his maison couture (fashion house) in Paris, clothing design and creation was handled by largely anonymous seamstresses, and high fashion descended from that worn at royal courts. Worth's success was such that he was able to dictate to his customers what they should wear, instead of following their lead as earlier dressmakers had done. The term couturier was in fact first created in order to describe him. While all articles of clothing from any time period are studied by academics as costume design, only clothing created after 1858 could be considered as fashion design. It was during this period that many design houses began to hire artists to sketch or paint designs for garments. The images were shown to clients, which was much cheaper than producing an actual sample garment in the workroom. If the client liked their design, they ordered it and the resulting garment made money for the house. Thus, the tradition of designers sketching out garment designs instead of presenting completed garments on models to customers began as an economy. At this time in fashion history the division between haute couture and ready-to-wear was not sharply defined. The two separate modes of production were still far from being competitors, and, indeed, they often co-existed in houses where the seamstresses moved freely between made-to-measure and ready-made. Around the start of the 20th century fashion magazines began to include photographs and became even more influential than in the past. In cities throughout the world these magazines were greatly sought-after and had a profound effect on public taste. Talented illustrators, among them Paul Iribe, George Lepape and George Barbier, drew exquisite fashion plates for these publications, which covered the most recent developments in fashion and beauty. Perhaps the most famous of these magazines was La Gazette du Bon Ton, which was founded in 1912 by Lucien Vogel and regularly published until 1925 (with the exception of the war years).
  16. 16. World War II brought about many radical changes to the fashion industry. After the war, Paris's reputation as the global center of fashion began to crumble and off-the-peg and mass- manufactured clothing became increasingly popular. A new youth style emerged in the 1950s, changing the focus of fashion. As the installation of central heating became more widespread the age of minimum-care garments began and lighter textiles and, eventually, synthetics, were introduced. Text 3 Leather in Modern Culture Leather is a material created through the tanning of hides and skins of animals, primarily cattle hide. The tanning process converts the putrescible skin into a durable and versatile material. Together with wood, leather formed the basis of much ancient technology. The leather industry and the fur industry are distinct industries that are differentiated by the importance of their raw materials. In the leather industry the raw materials are by-products of the meat industry, with the meat having higher value than the skin. The fur industry uses raw materials that are higher in value than the meat and hence the meat is classified as a by-product. Taxidermy also makes use of the skin of animals, but generally the head and part of the back are used. Hides and skins are also used in the manufacture of glue and gelatin. Due to its excellent resistance to abrasion and wind, leather found a use in rugged occupations. The enduring image of a cowboy in leather chaps gave way to the leather-jacketed and leather-helmeted aviator. When motorcycles were invented, some riders took to wearing heavy leather jackets to protect from road rash and wind blast; some also wear chaps or full leather pants to protect the lower body. Many sports still use leather to help in playing the game or protecting players; its flexibility allows it to be formed and flexed. The term leathering is sometimes used in the sense of a physical punishment (such as a severe spanking) applied with a leather whip, martinet, etc. Leather fetishism is the name popularly used to describe a fetishistic attraction to people wearing leather, or in certain cases, to the garments themselves. Many rock groups (particularly heavy metal and punk groups in the 1980s) are well-known for wearing leather clothing. Leather clothing, particularly jackets, almost come as standard in the heavy metal and Punk subculture. Extreme metal bands (especially black metal bands) and Goth rock groups have extensive leather clothing, i.e. leather pants, accessories, etc. Many cars and trucks come with optional or standard 'leather' seating. This can range from cheap vinyl imitation leather, found on some low cost vehicles, to real Nappa leather, found on luxury car brands like Mercedes-Benz, BMW, and Audi. Text 4 Computer-Aided Design (CAD) Computer-aided design (CAD) is the use of computer technology for the design of objects, real or virtual. CAD often involves more than just shapes. As in the manual drafting of technical
  17. 17. and engineering drawings, the output of CAD often must convey also symbolic information such as materials, processes, dimensions, and tolerances, according to application-specific conventions. CAD may be used to design curves and figures in two-dimensional ("2D") space; or curves, surfaces, or solids in three-dimensional ("3D") objects.[1] CAD is an important industrial art extensively used in many applications, including automotive, shipbuilding, and aerospace industries, industrial and architectural design, prosthetics, and many more. CAD is also widely used to produce computer animation for special effects in movies, advertising and technical manuals. The modern ubiquity and power of computers means that even perfume bottles and shampoo dispensers are designed using techniques unheard of by shipbuilders of the 1960s. Because of its enormous economic importance, CAD has been a major driving force for research in computational geometry, computer graphics (both hardware and software), and discrete differential geometry. The design of geometric models for object shapes, in particular, is often called computer- aided geometric design (CAD). Using CAD: Computer-Aided Design is one of the many tools used by engineers and designers and is used in many ways depending on the profession of the user and the type of software in question. There are several different types of CAD. Each of these different types of CAD systems require the operator to think differently about how he or she will use them and he or she must design their virtual components in a different manner for each. There are many producers of the lower-end 2D systems, including a number of free and open source programs. These provide an approach to the drawing process without all the fuss over scale and placement on the drawing sheet that accompanied hand drafting, since these can be adjusted as required during the creation of the final draft. 3D wireframe is basically an extension of 2D drafting. Each line has to be manually inserted into the drawing. The final product has no mass properties associated with it and cannot have features directly added to it, such as holes. The operator approaches these in a similar fashion to the 2D systems, although many 3D systems allow using the wireframe model to make the final engineering drawing views. 3D "dumb" solids (programs incorporating this technology include AutoCAD and Cadkey 19) are created in a way analogous to manipulations of real world objects. Basic three-dimensional geometric forms (prisms, cylinders, spheres, and so on) have solid volumes added or subtracted from them, as if assembling or cutting real-world objects. Text 5 The Effects of CAD Starting in the late 1980s, the development of readily affordable Computer-Aided Design programs that could be run on personal computers began a trend of massive downsizing in drafting departments in many small to mid-size companies. As a general rule, one CAD operator could readily replace at least three to five drafters using traditional methods. Additionally, many engineers began to do their own drafting work, further eliminating the need for traditional drafting departments. This trend mirrored that of the elimination of many office jobs traditionally performed by a secretary as word processors, spreadsheets, databases, etc. became standard software packages that "everyone" was expected to learn. Another consequence had been that since the latest advances were often quite expensive, small and even mid-size firms often could not compete against large firms who could use their computational edge for competitive purposes. Today, however, hardware and software costs have
  18. 18. come down. Even high-end packages work on less expensive platforms and some even support multiple platforms. The costs associated with CAD implementation now are more heavily weighted to the costs of training in the use of these high level tools, the cost of integrating a CAD/CAM/CAE PLM using enterprise across multi-CAD and multi-platform environments and the costs of modifying design work flows to exploit the full advantage of CAD tools. CAD vendors have effectively lowered these training costs. These methods can be split into three categories: 1. Improved and simplified user interfaces. This includes the availability of “role” specific tailorable user interfaces through which commands are presented to users in a form appropriate to their function and expertise. 2. Enhancements to application software. One such example is improved design-in-context, through the ability to model/edit a design component from within the context of a large, even multi-CAD, active digital mockup. 3. User oriented modeling options. This includes the ability to free the user from the need to understand the design intent history of a complex intelligent model. Text 6 Graphic Design The term graphic design can refer to a number of artistic and professional disciplines which focus on visual communication and presentation. Various methods are used to create and combine symbols, images and words to create a visual representation of ideas and messages. A graphic designer may use typography, visual arts and page layout techniques to produce the final result. Graphic design often refers to both the process (designing) by which the communication is created and the products (designs) which are generated. Common uses of graphic design include magazines, advertisements and product packaging. For example, a product package might include a logo or other artwork, organized text and pure design elements such as shapes and color which unify the piece. Composition is one of the most important features of graphic design especially when using pre-existing materials or diverse elements. While Graphic Design as a discipline has a relatively recent history, graphic design-like activities span the history of humankind: from the caves of Lascaux, to Rome's Trajan's Column to the illuminated manuscripts of the Middle Ages, to the dazzling neons of Ginza. In both this lengthy history and in the relatively recent explosion of visual communication in the 20th and 21st centuries, there is sometimes a blurring distinction and over-lapping of advertising art, graphic design and fine art. After all, they share many of the same elements, theories, principles, practices and languages, and sometimes the same benefactor or client. In advertising art the ultimate objective is the sale of goods and services. In graphic design, "the essence is to give order to information, form to ideas, expression and feeling to artifacts that document human experience." Design can also aid in selling a product or idea through effective visual communication. It is applied to products and elements of company identity like logos, colors, packaging, and text. Together these are defined as branding (see also advertising). Branding has increasingly become important in the range of services offered by many graphic designers, alongside corporate identity, and the terms are often used interchangeably.
  19. 19. Graphic design is also applied to layout and formatting of educational material to make the information more accessible and more readily understandable. Graphic design is applied in the entertainment industry in decoration, scenery, and visual story telling. Other examples of design for entertainment purposes include novels, comic books, opening credits and closing credits in film, and programs and props on stage. This could also include artwork used for t-shirts and other items screen printed for sale. Text 7 Sewing Sewing or stitching or Tailoring is the fastening of cloth, leather, furs, bark, or other flexible materials, using needle and thread. Its use is nearly universal among human populations and dates back to Paleolithic times (30,000 BCE). Sewing predates the weaving of cloth. Sewing is used primarily to produce clothing and household furnishings such as curtains, bedclothes, upholstery, and table linens. It is also used for sails, bellows, skin boats, banners, and other items shaped out of flexible materials such as canvas and leather. Most sewing in the industrial world is done by machines. Pieces of a garment are often first tacked together. The machine has a complex set of gears and arms that pierces thread through the layers of the cloth and semi-securely interlocks the thread. Some people sew clothes for themselves and their families. More often home sewers sew to repair clothes, such as mending a torn seam or replacing a loose button. A person who sews for a living is known as a seamstress (from seams-mistress) or seamster (from seams-master), dressmaker, tailor, garment worker, machinist, or sweatshop worker. "Plain" sewing is done for functional reasons: making or mending clothing or household linens. "Fancy" sewing is primarily decorative, including techniques such as shirring, smocking, embroidery, or quilting. Sewing is the foundation for many needle arts and crafts, such as applique, canvas work, and patchwork. While sewing is sometimes seen as a semi-skill job, flat sheets of fabric with holes and slits cut into the fabric can curve and fold in complex ways that require a high level of skill and experience to manipulate into a smooth, ripple-free design. Aligning and orienting patterns printed or woven into the fabric further complicates the design process. Once a clothing designer with these skills has created the initial product, the fabric can then be cut using templates and sewn by manual laborers or machines. Text 8 Industrial Design Industrial design is a combination of applied art and applied science, whereby the aesthetics and usability of mass-produced products may be improved for marketability and production. The role of an Industrial Designer is to create and execute design solutions towards problems of form, usability, user ergonomics, engineering, marketing, brand development and sales.[1] The term "industrial design" is often attributed to the designer Joseph Claude Sinel in 1919 (although he himself denied it in later interviews) but the discipline predates that by at least a
  20. 20. decade. Its origins lay in the industrialization of consumer products. For instance the Deutscher Werkbund, founded in 1907 and a precursor to the Bauhaus, was a state-sponsored effort to integrate traditional crafts and industrial mass-production techniques, to put Germany on a competitive footing with England and the United States. Western Electric model 302 Telephone, found almost universally in the United States from 1937 until the introduction of touch-tone dialing General Industrial Designers are a cross between an engineer and an artist. They study both function and form, and the connection between product and the user. They do not design the gears or motors that make machines move, or the circuits that control the movement, but they can affect technical aspects through usability design and form relationships. And usually, they partner with engineers and marketers, to identify and fulfill needs, wants and expectations. In Depth "Industrial Design (ID) is the professional service of creating and developing concepts and specifications that optimize the function, value and appearance of products and systems for the mutual benefit of both user and manufacturer" according to the IDSA (Industrial Designers Society of America). Design, itself, is often difficult to define to non-designers because the meaning accepted by the design community is not one made of words. Instead, the definition is created as a result of acquiring a critical framework for the analysis and creation of artifacts. One of the many accepted (but intentionally unspecific) definitions of design originates from Carnegie Mellon's School of Design, "Design is the process of taking something from its existing state and moving it to a preferred state." This applies to new artifacts, whose existing state is undefined and previously created artifacts, whose state stands to be improved. Text 9 The Development of Industrial Management Industrial management term applied to highly organized modern methods of carrying on industrial, especially manufacturing, operations. Before the Industrial Revolution people worked with hand tools, manufacturing articles in their own homes or in small shops. In the third quarter of the 18th cent. steam power was applied to machinery, and people and machines were brought together under one roof in factories, where the manufacturing process could be supervised. This was the beginning of shop management. In the next hundred years factories grew rapidly in size, in degree of mechanization, and in complexity of operation. The growth, however, was accompanied by much waste and inefficiency. In the United States many engineers, spurred by the increased competition of the post-Civil War era, began to seek ways of improving plant efficiency. The first sustained effort in the direction of improved efficiency was made by Frederick Winslow Taylor , an assistant foreman in the Midvale Steel Company, who in the 1880s undertook a series of studies to determine whether workers used unnecessary motions and hence too much time in performing operations at a machine. Each operation required to turn out an article or part was analyzed and studied minutely, and superfluous motions were eliminated. Records were kept of the performance of workers and standards were adopted for each operation. The early studies resulted in a faster pace of work and the introduction of rest periods. Industrial management also involves studying the performance of machines as well as people. Specialists are employed to keep machines in good working condition and to ensure the quality of their production. The flow of materials through the plant is supervised to ensure that
  21. 21. neither workers nor machines are idle. Constant inspection is made to keep output up to standard. Charts are used for recording the accomplishment of both workers and machines and for comparing them with established standards. Careful accounts are kept of the cost of each operation. When a new article is to be manufactured it is given a design that will make it suitable for machine production, and each step in its manufacture is planned, including the machines and materials to be used. Text 10 Modern Trends of Management The principles of scientific management have been gradually extended to every department of industry, including office work, financing, and marketing. Soon after 1910 American firms established the first personnel departments, and eventually some of the larger companies took the lead in creating environments conducive to worker efficiency. Safety devices, better sanitation, plant cafeterias, and facilities for rest and recreation were provided, thus adding to the welfare of employees and enhancing morale. Many such improvements were made at the insistence of employee groups, especially labor unions. Over the years, workers and their unions also sought and often won higher wages and increased benefits, including group health and life insurance and liberal retirement pensions. During the 1980s and 1990s, however, cutbacks and downsizing in many American businesses substantially reduced many of these benefits. Some corporations permit employees to buy stock; others make provision for employee representation on the board of directors or on the shop grievance committee. Many corporations provide special opportunities for training and promotion for workers who desire advancement, and some have made efforts to solve such difficult problems as job security and a guaranteed annual wage. Modern technological devices, particularly in the areas of computers, electronics, thermodynamics, and mechanics, have made automatic and semiautomatic machines a reality. The development of such automation is bringing about a second industrial revolution and is causing vast changes in commerce as well as the way work is organized. Such technological changes and the need to improve productivity and quality of products in traditional factory systems also changed industrial management practices. In the 1960s Swedish automobile companies discovered that they could improve productivity with a system of group assembly. In a contrast to older manufacturing techniques where a worker was responsible for assembling only one part of the car, group assembly gave a group of workers the responsibility for assembling an entire car. The system was also applied in Japan, where managers developed a number of other innovative systems to lower costs and improve the quality of products. One Japanese innovation, known as quality circles, allowed workers to offer management suggestions on how to make production more efficient and to solve problems. Workers were also given the right to stop the assembly line if something went wrong, a sharp departure from U.S. factories. Computer Science and Management School Text 1 How did the computer evolve and where did it all start?
  22. 22. The computer first started with a machine that could calculate math problems known as a calculator to us today, but known as the difference engine to Charles Babbage in 1833. The main purpose of the machine was to calculate astronomical tables. The machine was never built because the government ignored his ideas. In 1940 an idea of the Analytical machine, which claimed could perform any mathematical calculation. The machine was built but there were too many bugs and defects that made the machine incompatible of doing a lot of mathematics. The first computer costs over a million dollars, and the first personal computer was around 10,000 dollars. The computer system used punch cards to record numerical data. “The computer took up a whole room and consists of; 19,000 vacuums, weighed over 30 tons, and consumed over 200 kilowatts of energy. In comparison the first calculator had a 5 horsepower engine, measured 2x51 feet, weighed 5 tons, and contained hundreds of miles of wiring, which could do less math than a calculator we use today. Today over 60% of the metropolitans in the U.S have families with access to computers. Likewise General Motors has a 1:2 ratio of computers in their workplace for their employees. The Microsoft Corporation hit big with its operating system and had 3 major changes in their lives. In 1992 Microsoft’s stock reached a record high of $113 a share, it shipped windows 3.1 and sold the most number of copies, and established a separation from IBM and became an independent company. With Microsoft in control they sent out over 1,000 upgraded computer components from 1990 to 2000. In 2006 a computer record was released followed by many statistics that astounding the computer companies . “The annual search revenue was around $4,000,000,000, ¾ of Americans spent 12 hours on the computer a week, Spam on the internet increases 60%, 70% of Americans said they would rather shop online than go to a store, and windows newest release xp had 50 million lines of code, which grows over 20% more each year.” As soon as the business world noticed the drastic change in computers in the 1990s a revolution of the business world was soon to come. Today we use computers everyday, we don’t think about how it all started or how many years and hard work there is behind every program, operating system, and website, that make a computer what it is today. Text 2 What is a computer virus Computer viruses are small software programs that are designed to spread from one computer to another and to interfere with computer operation. A virus might corrupt or delete data on your computer, use your e-mail program to spread itself to other computers, or even erase everything on your hard disk. Viruses are often spread by attachments in e-mail messages or instant messaging messages. That is why it is essential that you never open e-mail attachments unless you know who it's from and
  23. 23. you are expecting it. Viruses can be disguised as attachments of funny images, greeting cards, or audio and video files. Viruses also spread through downloads on the Internet. They can be hidden in illicit software or other files or programs you might download. To help avoid viruses, it's essential that you keep your computer current with the latest updates and antivirus tools, stay informed about recent threats, and that you follow a few basic rules when you surf the Internet, download files, and open attachments. Once a virus is on your computer, its type or the method it used to get there is not as important as removing it and preventing further infection. Viruses may take several forms. The two principal ones are the boot-sector virus and file viruses, but there are others. - Boot-sector virus: The boot sector is that part of the system software containing most of the instructions for booting, or powering up, the system. The boot sector virus replaces these boot instructions with some of its own. Once the system is turned on, the virus is loaded into main memory before the operating system. From there it is in a position to infect other files. - File virus: File viruses attach themselves to executable files- those that actually begin in a program. (these files have extensions .com and .exe.) When the program is run, the virus starts working, trying to get into main memory and infect other files. Text 3 Recent trends of supporting your Computer with Modern Hardware Recently computer hardware has become one of the most flourishing industries in the world. As a number of people are getting familiar with the computer technology the demand of hardware industry for has grown up enormously. A number of companies are handling the sales of computer hardware and achieving the demands of a several computer literate customers. Apart from the hardware sales these companies also provide essential computer support, which is needed by most of all computerized organizations irrespective of their scale, location or size. These companies usually offer proficiency in all kinds of computer hardware mechanism and computer hardware support service in a rate, which is highly competitive. As there is a cutthroat competition in the market different companies offer various kinds of specialized service in a highly affordable rate to the customers.
  24. 24. Some big and reputed companies like IBM, HP, Microsoft or Apple have their own websites, which offer wide support services and hardware sales in many ways to their customers for the products they sale. All these brands have their centers, online PC support, tutorials and tips and FAQs all over the world from where they offer corresponding hardware supports. Their wide range of supports includes different topics such as recovery and back up, brand components, battery related issues, maintenance and performance of the hardware/software of the brand and the security features offered with them and many more. In most of all metro cities there are a number of companies, which are involved in hardware sales. Most of all these shops have hardware engineers and mechanics who are trained enough to solve all kinds of PC related issues and hence provide necessary PC supports whenever you need them. According to its rule a computer support services can also offer maintenance and repair for a certain period of time. Moreover recently a number of websites are offering online PC support tutorials, which are mostly created by award winning professionals, authors and technology and expertise. These websites also offer reliable computer support to the customers. You may also visit these websites to download the support utilities by simply registering yourself in these sites. 1. How to Clean Your Computer By: Sarah Jones | 23/07/2009 | Security If you are a computer user and want your computer to run smoothly, for a long time, you need to maintain it properly and clean all your programs, files and applications regularly. If you wish you can send your PC for cleaning every six months. Spyware Identification and Elimination with Technical Experts By: Sarah Jones | 20/07/2009 | Security Now a days many people are opting for Internet for searching anything they need. It saves a lot of time and the information are quite authentic. However, the entire process of surfing the internet and downloading information from different websites can invite virus, spyware and malware to your computer. Once the viruses, spywares or other malwares get installed on your PC, it will steal all your personal online information by monitoring your keystrokes. Spyware, Virus, Malware – Threat to the Online Identity By: Sarah Jones | 20/07/2009 | Security It can be quite disappointing if a computer, which used to run very fast till a few days ago suddenly, starts running like a snail, frequently restarts and freezes. It can get more dangerous if you cannot remember what went wrong with the PC. All that you can remember is that while
  25. 25. surfing the internet you have clicked on some ads, which suddenly appeared on the screen of your computer. Speed up Windows XP and Vista while starting up By: Sarah Jones | 18/07/2009 | Software Does your computer take forever to startup? It is the most common problem a computer user has to face. It can get irritating if you have a certain deadline to meet in your work front. Get rid off Adware and Spyware By: Sarah Jones | 18/07/2009 | Software There are various kinds of “infections” or “intrusion” which can infect a modern day computer including Malware and viruses. All types of spiteful software, which includes Adware and Spyware, are known as Malware. Spyware and Adware removers to Boost up PC performance By: Sarah Jones | 18/07/2009 | Software It is a widely accepted truth that spyware and adware do a lot of harm to computer but most computer users do not know how much harmful they actually are. But they definitely kill speed of a computer. Speed up PC without upgrading By: Sarah Jones | 18/07/2009 | Software Computer is one of the most popular devices and has been placed at the top of the priority list for many people all over the world. Most people cannot work without computer be it at home or school or at work. But using a computer and handling it properly is completely two different things. Text 4 Robots commanded by man thought Honda has lately highly-developed fresh interface engineering that grants man thought to command the Asimo android merely by thinkings. The user interface is known as BMI (brain- machine int.) and was produced along with Advanced Telecommunications Research Institute International (ATR) and Shimadzu Corporation. It comprises of a sensor-laden helmet that quantifies the user's brainpower and a computing device that examines the thinking models and relays them as radio instructions to the android. Once the exploiter thinks of displacing his or her right, the pre-programmed Asimo answers numerous moments later by elevating its right limb. Similarly, Asimo elevates its left arm once the individual imagines locomoting their left, it commences to walk once the human thinks of locomoting their legs, and it bears its deal upwards before of its utter if the individual thinks of locomoting their tongue.
  26. 26. The high-precision BMI engineering trusts upon 3 dissimilar cases of brainpower action measures: - EEG (electroencephalography) detectors evaluate the slim variations in electric potential on the scalp that happen while imagining - NIRS (near-infrared spectrometry) detectors evaluate alterations in intellectual blood flow - Fresh acquired data origin engineering is accustomed method the complex information by these 2 cases of detectors, leading inwards a more exact indication. BMI scheme bears an accuracy grade of more than 90%. Honda has been carrying on BMI inquiry and developing on ATR since 2005. It's checking over the hypothesis of one day expending this case of user interface engineering with AI and robotics to produce devices that exploiters can engage without having to make a motion. Text 5 Possible Coming Attractions: From Gallium Arsenide to Nanotechnology to Biochips Future processing technologies may use optical processing, nanotechnology and biochips. The old theological question of how many angels could fit on the head of a pin today has become the technological question of how many circuits could pin there. Computer developers are obsessed with speed, constantly seeking ways to promote faster processing. Some of the most promising directions, already discussed, are RISC chips and parallel processing. Some other research paths being explored are the following: - Opto-electronic processing: Today’s computers are electronic, tomorrow’s might be opto- electronic-using light, not electricity. With optical-electronic technology, a machine using lasers, lenses, and mirrors would represent the on-and-off codes of data with pulses of light. Light is much faster than electricity. Indeed, fiber-optic networks, which consist of hair-thin glass fibers, can move information at speeds 3000 times faster than conventional networks. However, the signals get bogged down when they have to be processed by silicon chips. Opto- electronics chips would remove that bottleneck. - Nanotechnology: Nanontechnology, nanoelectronics, nanostructures, and nanofabrication- all start with a measurement known as a nanometer. A nanometer is a billionth of a mete, which means we are operating at the level of atoms and molecules. A human hair is approximately 100,000 nanometers in diameter. (Nanotechnology is a science based on using molecules to create tiny machines to hold data or perform tasks. Experts attempt to do “nanofabrication” by building tiny “nanostructures” one atom or molecule at a time. When applied to chips and other electronic devices, the field is called “nanoelectronics.”) - Biotechnology: A final possibility is using biotechnology to grow cultures of bacteria, such as one that, when exposed to light, emits a small electrical charge. The properties of this “biochip” could be used to represent the on-off digital signals used in computing.
  27. 27. Imagine millions of nanomachines grown from microorganisms processing information at the speed of light and sending it over far-reaching pathways. What kind of changes could we expect with computers like these? Text 6 Human- Biology Input Devices Human biology input devices include biometric systems, line-of-sight systems, cyber gloves and body suits, and brainwave devices. Characteristics and movements of the human body, when interpreted by sensors, optical scanners, voice recognition, and other technologies, can become forms of input. Some examples are as follows: - Biometric systems: Biometric security devices identify a person through a fingerprint, voice intonation, or other biological characteristic. For example, retinal-identification devices use a ray of light to identify the distinctive network of blood vessels at the back of one’s eyeball. Biometric systems are used in lieu of typed passwords to identify people authorized to use a computer system. - Line-of-sight systems: Line-of-sight systems enable a person to use his or her eyes to “point” at the screen, a technology that allows physically handicapped users to direct a computer. This is accomplished by a video camera mounted beneath the monitor in front of the viewer. When the user looks at a certain place on the screen, the video camera and computer translate the area being focused on into screen coordinates. - Cyber gloves and body suits: Special gloves and body suits- often used in conjunction with “virtual reality” games (described shortly) - use sensors to detect body movements. The data for these movements is sent to a computer system. Similar technology is being used for human-controlled robot hands, which are used in nuclear power plants and hazardous- waster sites. - Brainwave devices: Perhaps the ultimate input device analyzes the electrical signals of the brain and translates them into computer commands. Experiments have been successful in getting users to move a cursor on the screen through sheer power of thought. Other experiments have shown users able to type a letter by slowly spelling out the words in their heads. Although there is a very long way to go before brainwave input technology becomes practicable, the consequences could be tremendous, not only for handicapped people but for everyone. Text 7 Display screens Display screens are either CRT (cathode-ray tube) or flat- panel display. CRTs use a vacuum tube like that in TV set. Flat-panel displays are thinner, weigh less, and consume less power but are not as clear. Flat-panel displays are liquid-crystal display (LCD), electroluminescent (EL) display, or gas-plasma display. Users must decide about screen clarity, monochrome versus color, and text
  28. 28. versus graphics (character-mapped versus bitmapped). Various video display adapters (such as VGA, SVGA, and XGA) allow various kinds of resolution and colors. Display screens – also variously called monitors, CRTs, or simply screens – are output devices that show programming instructions and data as they are being input and information after it is processed. Sometimes a display screen is also referred to as a VDT, for video display terminal, although technically a VDT includes both screen and keyboard. The size of a screen is measured diagonally from corner to corner in inches, just like television screens. For desktop microcomputers, 14-inch screens are a common size. Portable computers of the notebook and subnotebook size may have screens ranging from 7.4 inches to 10.4 inches. Pocket-size computers may have even smaller screens. To give themselves a larger screen size, some portable-computer users buy a larger desktop monitor (or a separate “docking station”) to which the portable can be connected. Near the display screen are control knobs that, as on a television set, allow you to adjust brightness and contrast. Displays screens are two types: cathode-ray tubes and flat-panel displays. Cathode-ray tubes (CRTs) – The most common form of display screen is the CRT. A CRT, for cathode-ray tube, is a vacuum tube used as a display screen in a computer or video display terminal. This same kind of technology is found not only in the screens of desktop computers but also in television sets and in flight-information monitors in airports. Flat-panel displays – if CRTs were the only existing technology for computer screens, we would still be carrying around 25-pound “luggables” instead of lightweight notebooks, subnotebooks, and pocket PCs. CRTs provide bright, clear images, but they consume space, weight, and power. Compared to CRTs, flat-panel displays are much thinner, weigh less, and consume less power. Thus, they are better for portable computers. Text 8 Robots The first Robot Olympics was held in Toronto in November 1991. “Robots competed for honors in 15 events – jumping, rolling, fighting, climbing, walking, racing against each other, and solving problems,” reported writer John Malyon. For instance, in the Micromouse race, robots had to negotiate a standardized maze in the shortest possible time. A robot is an automatic device that performs functions ordinarily ascribed to human beings or that operate with what appears to be almost human intelligence. Actually, robots are of several kinds- industrial robots, perception systems, and mobile robots, for example. All are the objects of study of robotics, a field that attempts to develop machines that can perform work normally done by people. Robotics in turn is a subset of artificial intelligence, a family of technologies that attempts to develop computer systems that can mimic or simulate human thought processes and actions. Robots are of interest to us as output devices because they can perform computer-driven electromechanical functions that the other devices so far described cannot. For example, a robot resembling a miniature tank was able to explore the inside of the Great Pyramid of Giza in Egypt. Equipped with treads bottom and top, and carrying lights and television camera, the robot was able to probe an 8-inch-square 63-yard-long shaft to a formerly hidden chamber in the pyramid. A robot called ScrubMate-equipped with computerized controls, ultrasonic “eyes,” sensors, batteries, three different cleaning and scrubbing tools, and a self-squeezing mop-can clean bathrooms.
  29. 29. Rosie the HelpMate delivers special-order meals from the kitchen to nursing stations in hospitals. Robodoc is used in surgery to bore the thighbone so that a hip implant can be attached. Robots are also used for dangerous jobs such as fighting oil-well fires, doing nuclear inspections and cleanups, and checking for mines and booby traps. When equipped with video and two-way audio, they can also be used to negotiate with terrorists. Text 9 Neural Networks Fuzzy-logic (a method of dealing with imprecise data and vagueness, with problems that have many answers rather than one) principles are being applied in another area of AI, neural networks. The word neural comes from neurons, or brain cells. Neural networks are physical electronic devices or software to mimic the neurological structure of the human brain. The human brain is made up of nerve cells (neurons) with a three-dimensional lattice of connections between them (axons). Electrical connections between nerve cells are activated by synapses. In a hardware neural network, the nerve cell is replaced by a transistor, which acts as a switch. Wires connect the cells (transistors) with each other. The synapse is replaced by an electronic component called a resistor, which determines whether a cell should activate the electricity to other cells. A software neural network emulates a hardware neural network, although it doesn’t work as fast. The essential characteristics of neural networks are as follows: - Learning: Like a small child, a neural network can be trained to learn by having its mistakes corrected, just as the human brain learns by making changes in the links (synapses) between nerve cells. One writer gives this example: “If you’re teaching the neural network to speak, for instance, you train it by giving it sample words and sentences, as well as desired pronunciations. The connections between the electronic neurons gradually change, allowing more or less current to pass.” The current is adjusted until the system is able to “speak” correctly. How effective are neural networks? One such program learned to pronounce a 20,000-word vocabulary overnight. Another helped a mutual-fund manager to outperform the stock market by 2.3-5.6 percentage points over three years. As a San Diego hospital emergency room in which patients complained of chest pains, a neural network program was given the same information doctors received. It correctly diagnosed patients with heart attacks 97% of the time, compared to 78% for the human physicians. Text 10 3G Technology 3G refers to the third generation of mobile telephony (that is, cellular) technology. The third generation, as the name suggests, follows two earlier generations.
  30. 30. The first generation (1G) began in the early 80's with commercial deployment of Advanced Mobile Phone Service (AMPS) cellular networks. Early AMPS networks used Frequency Division Multiplexing Access (FDMA) to carry analog voice over channels in the 800 MHz frequency band. The second generation (2G) emerged in the 90's when mobile operators deployed two competing digital voice standards. In North America, some operators adopted IS-95, which used Code Division Multiple Access (CDMA) to multiplex up to 64 calls per channel in the 800 MHz band. Across the world, many operators adopted the Global System for Mobile communication (GSM) standard, which used Time Division Multiple Access (TDMA) to multiplex up to 8 calls per channel in the 900 and 1800 MHz bands. The International Telecommunications Union (ITU) defined the third generation (3G) of mobile telephony standards – IMT-2000 – to facilitate growth, increase bandwidth, and support more diverse applications. For example, GSM could deliver not only voice, but also circuit-switched data at speeds up to 14.4 Kbps. But to support mobile multimedia applications, 3G had to deliver packet-switched data with better spectral efficiency, at far greater speeds. However, to get from 2G to 3G, mobile operators had make "evolutionary" upgrades to existing networks while simultaneously planning their "revolutionary" new mobile broadband networks. This lead to the establishment of two distinct 3G families: 3GPP and 3GPP2. The 3rd Generation Partnership Project (3GPP) was formed in 1998 to foster deployment of 3G networks that descended from GSM. 3GPP technologies evolved as follows. • General Packet Radio Service (GPRS) offered speeds up to 114 Kbps. • Enhanced Data Rates for Global Evolution (EDGE) reached up to 384 Kbps. • UMTS Wideband CDMA (WCDMA) offered downlink speeds up to 1.92 Mbps. • High Speed Downlink Packet Access (HSDPA) boosted the downlink to 14Mbps. • LTE Evolved UMTS Terrestrial Radio Access (E-UTRA) is aiming for 100 Mbps. Management Text 1 Physical Resources Managers are charged with getting work done through people effectively and efficiently. Effectiveness refers to the achievement of the desired objectives. Thus, if a business’s goal is for customers to be pleased with its products, an engineering department is effective when it designs products customers will like. Efficiency refers to minimal use of resources. An efficient engineering department does its job without wasted time and materials. Note that getting a lot done at a low cost (efficiency) is not desirable without effectiveness. For business organizations, the fundamental indicator that they are operating effectively and efficiently is profit. Managers seek effectiveness through the way they manage resources. Managers acquire and use three broad categories of resources: physical, organizational, and human capital. Skillfully managing any of these can improve performance; however, it is interesting to consider whether