Home
Explore
Submit Search
Upload
Login
Signup
Advertisement
Advertisement
Upcoming SlideShare
Ejercicios de Calculo. Grupo 2.
Loading in ... 3
1
of
9
Top clipped slide
Betta
Jan. 8, 2014
β’
0 likes
0 likes
Γ
Be the first to like this
Show More
β’
464 views
views
Γ
Total views
0
On Slideshare
0
From embeds
0
Number of embeds
0
Download Now
Download to read offline
Report
Instituto TecnolΓ³gico Superior de Salvatierra
Follow
Docente en Instituto TecnolΓ³gico Superior de Salvatierra
Advertisement
Advertisement
Advertisement
Recommended
Ejercicios de Calculo. Grupo 2.
VANESSAPNFSCA
374 views
β’
6 slides
Ejercicios resueltos de ecuaciones diferenciales
973655224
161 views
β’
5 slides
MTM/1C. Pertidaksamaan Eksponensial
Franxisca Kurniawati
1.2K views
β’
7 slides
Numerical Analysis
M.Saber
1.7K views
β’
6 slides
Ejercicios de tranformada de laplace rafael marin
Rafael Mejia
165 views
β’
10 slides
Mcdi u3 a2_ lula
Luis Lopez Ac
443 views
β’
5 slides
More Related Content
Slideshows for you
(19)
Editando ecuaciones en Word
Cyn_008
β’
717 views
νκ·λͺ¨λΈμ μ’ λ₯μ νΉμ§
Eun-Jo Lee
β’
2.9K views
Euler's function
AL- AMIN
β’
45 views
Taller 11Β° maths_integrales_indf_p4_2015
Orlando Orozco Marriaga
β’
109 views
Tugas Matematika Kelompok 7
cara_mau2
β’
259 views
Tugas Matematika Kelompok 7
cara_mau2
β’
236 views
Tugas Matematika "Kelompok 7"
sarman21
β’
360 views
Tugas Matematika Kelompok 7
cara_mau2
β’
185 views
Tugas Matematika Kelompok 7
cara_mau2
β’
319 views
GuΓa ejercicios
eymavarez
β’
226 views
La recta
Jhonny Sufia Subero
β’
370 views
Tugas matematika kelompok 8 kelas 1 eb
Lara Sati
β’
394 views
Examen 4 unidad matematicas integrales
Martin Garcia
β’
249 views
Aplikasi analisis
Muda Apriyanti
β’
34 views
Parcial ii analisis numerico
Angelaalvarado16
β’
24 views
Transformada de Laplace
J_AFG
β’
517 views
Tugas matematika kalkulus
fdjouhana
β’
464 views
Demostrar el determinante
algebragr4
β’
370 views
Font Design with Progressive invariant GAN
I-Sheng Fang
β’
37 views
Viewers also liked
(20)
Pressupost 2010
Ajuntament Igualada
β’
553 views
Surat al mulk
Muffaqien Fauzi
β’
897 views
felicitat
Sagrada FamΓlia
β’
227 views
PresentaciΓ³ Judit GrΓ cia
Sagrada FamΓlia
β’
311 views
Presentacio 1 Aleix
Sagrada FamΓlia
β’
266 views
The Host
JCMHawke
β’
386 views
Real Estate Institute of Canada - June 2013
Neil Thornton HBA, MA
β’
292 views
Llargs i negres 1 r premi pili garcia
Biblioteca Almenar
β’
274 views
Top 5 issues niagara niagara business club - 2015
Neil Thornton HBA, MA
β’
318 views
Gotl Slide Show
ckmar57
β’
266 views
Consumer Awareness
Kristina Flores
β’
6.6K views
Presentacio Paes Igualada
Ajuntament Igualada
β’
447 views
Novetats novelΒ·la estiu
Biblioteca Almenar
β’
678 views
Ecstasies
deesunshine
β’
261 views
clorinda
marumarsico
β’
166 views
HBT-landstinget stockholm
Centerpartiet i SLL
β’
458 views
Leading Today's Teams - Cultivating a culture that embraces change - Ontario ...
Neil Thornton HBA, MA
β’
517 views
Buying A Home
Kristina Flores
β’
598 views
Super Typhoon Haiyan update 9 November 2013
Professor Eric K. Noji, M.D., MPH, DTMH(Lon), FRCP(UK)hon
β’
1K views
Snow Tsunami Temporarily Spares Northeastern USA 25 January 2015
Professor Eric K. Noji, M.D., MPH, DTMH(Lon), FRCP(UK)hon
β’
941 views
Advertisement
Betta
FunciΓ³n Beta 1 π‘ π₯β1
(1 β π‘) π¦β1 ππ‘ ; π½ π₯, π¦ = π₯>0 π¦>0 0 Si hacemos π‘ = π ππ2 π ππ‘ = 2 π ππ π cos π ππ Si reemplazamos limites π‘ = 0 β π = 0 π‘=1 β π= π 2 Reemplazamos π 2 π½ π₯, π¦ = 2 (π ππ2 π) π₯β1 1 β π ππ2 π¦β1 π ππ π cos π ππ 0 π 2 π½ π₯, π¦ = 2 π ππ2π₯β1 π β cos2yβ1 π ππ 0 π 2 1 π½ π₯, π¦ = 2 π ππ2π₯β1 π β cos2yβ1 π ππ 0 Si hacemos π‘= 1 1+ π’ ππ’ 1+ π’ ππ‘ = 0 π½ π₯, π¦ = β β β π½ π₯, π¦ = 0 β π½ π₯, π¦ = 0 2 π π π‘ = 0 β π’ = β 1 1+ π’ π₯β1 π¦ π π 1 1β 1+ π’ π‘=1β0=0 π¦β1 1 1+ π’ π₯β1 1 1+ π’ π’ π¦ β1 ππ’ β β π₯β1 1 + π’ π¦β1 1 + π’ 1+ π’β1 1+ π’ π’ π¦ β1 ππ’ π½ π₯, π¦ = 1 + π’ π₯β1+π¦β1+2 π’ π¦β1 ππ’ π½ π₯, π¦ = 1 + π’ π₯+π¦ π¦β1 ππ’ 1+ π’ ππ’ 1+ π’ 2 2 2
Teorema π½ π₯, π¦
= ΞxΞy ; Ξ x+y π₯>0 π¦>0 Ejemplo π 2 tan π ππ 0 π/2 0 π ππ π cos π 1/2 ππ π/2 π ππ 1/2 π πππ β1/2 π ππ 0 Comparando 1 π½ π₯, π¦ = 2 2π₯ β 1 = 1 2 2π¦ β 1 = β π 2 π ππ2π₯β1 π β cos2yβ1 π ππ 0 β 2π₯ = 1 2 1 3 + 1 β 2π₯ = 2 2 β 2π¦ = β β 1 1 + 1 β 2π¦ = 2 2 π= π π β Si aplicamos el teorema = 1 β 2 1 = β 2 Ξ 3 βΞ 1 4 4 Ξ 3+1 4 4 Ξ 3 βΞ 1 4 4 4 ; ππππ Ξ =Ξ 1 =1 4 4 Ξ 4 π= π π
1 3 1 = β Ξ β
Ξ 2 4 4 = 1 1 1 β Ξ β Ξ 1β 2 4 4 Aplicamos teorema de gamma = 1 Ο β Ο 2 sen 4 = 1 2 = π 2 2 π 2 β π₯ π β1 0 1+π₯ Resolver ππ₯ Por definiciΓ³n π½ π₯, π¦ = π’ π¦ β1 ππ’ 1+π’ π₯ +π¦ Comparando y-1=p-1 x+y=1 y=p x=1βp Reemplazamos β 0 π₯ πβ1 ππ₯ = π½ 1 β π, π 1+ π₯ = π½ π, 1 β π
= Ξ p Ξ
1βp Ξ p+1βp = Ξ p Ξ 1βp Aplicamos teorema de gamma = π π ππ ππ Resolver β ββ π 2π₯ π 3π₯ + 1 2 ππ₯ π’ = π 3π₯ β ln π’ = ln π 3π₯ β ln π’ = 3π₯ π₯= 1 ln π’ β 3 1 ππ’ 3 ππ₯ ππ₯ = Evaluamos los lΓmites Cuando π₯ = β β β 0 1 = 3 π’=β 1 2β ln π’ π 3 π’+1 1 ππ’ 3 π’ 2 π 3 ln π’ β 0 β 2 π¦ π₯ = ββ β π’ π’+1 2 ππ’ Por propiedades de euler y logaritmos 1 = 3 1 = 3 β 0 β 0 2 π’3 β π’β1 ππ’ π’+1 2 β1 π’3 π’+1 2 ππ’ π’=0
Si comparamos con π¦β1=
β 1 3 π½ π₯, π¦ = β Reemplazamos 1 4 2 π½ , 3 3 3 4 2 1 Ξ 3 Ξ 3 = β 4 2 3 Ξ 3+3 1 1 2 Ξ 3 Ξ 3 1 = β 3 6 3 Ξ 3 1 2 1 Ξ 3 Ξ 3 = β 9 Ξ(2) Ξ 2 = 1! 1 1 2 βΞ Ξ 9 3 3 = 1 1 1 βΞ Ξ 1β 9 3 3 Aplicamos teorema de gamma = = = 1 Ο β 9 sen Ο 3 1 Ο β 9 3 2 2 Ο β 9 3 2 3 ππ’ 1+π’ π₯ +π¦ π¦= β π₯+ π¦ =2 β π₯ =2β = π’ π¦ β1 1 π +1β π= 3 π β π= π π
Resolver 3 ππ₯ π₯β1 1 3 3β π₯ 1 β 2 π₯β1 3β π₯ 1 β 2 ππ₯ 1 Sea
x β 1 = 2y ο x = 2y+1 ο dx = 2dy Cuando x = 1 y = 0 1 = 1 β 2 2π¦ cuando x=3 y=1 1 β 2 3 β 2π¦ + 1 2ππ¦ 0 1 =2 1 β 2 2 1 (π¦)β2 3 β 2π¦ + 1 1 β 2 ππ¦ 0 = = = = 1 2 2 1 1 1 π¦ β2 2 β 2π¦ 1 β π¦ 2 1 1 β 2 2 1β π¦ 1 1 π¦ β2 2β2 ππ¦ 1 β 2 ππ¦ 1β π¦ 1 β 2 ππ¦ 0 1 2 = ππ¦ 0 2 2 3 β 2π¦ β 1 0 2 2 1 β 2 0 2 2 1 β π¦ 2 π¦ β 1/2 (1 β π¦)β 1/2 ππ¦ 2 2 0 ο x=Β½ Sea x - 1 = - Β½ y β 1 = - Β½ ο y= Β½ Luego π½ = = π 1 1 , 2 2 πβ π Rta 1 = 1 Ξ 2 Ξ 2 1 1 Ξ 2 +2 1 1 Ξ 2 Ξ 2 ο Ξ(1) ο Ξ 1 2 Ξ 1 2
Ejercicio especial Resolver 1 π₯ π β1 1
β π₯ πβ1 ππ₯ π₯ + π π +π 0 π+1 π₯ π¦= Sugerencia π+π₯ π¦ π+ π₯ = π+1 π₯ Derivada de un cociente π¦π + π¦π₯ = π + 1 π₯ π(π + 1 β π¦) β π¦π(β1) π¦π = π + 1 π₯ β π¦π₯ π π + 1 β π¦ + π¦π π¦π = π + 1 β π¦ π₯ π 2 + π β π¦π + π¦π π¦π π+1β π¦ π2 + π π₯= ππ₯ = π(π + 1) π π + 1 ππ¦ π+1β π¦ 2 π π π₯ = 0 β π¦ = 0 Reemplazamos 1 π¦π π+1β π¦ 0 1 0 1 0 1β π¦π π+1β π¦ π¦π π+1β π¦+ π 0 1 π β1 π π π₯ = 1 πβ1 π π+1 π+1β π¦ π +π π¦π π β1 π + 1 β π¦ β π¦π π+1β π¦ π + 1 β π¦ π β1 π +π π¦π + π π + 1 β π¦ π+1β π¦ 1= ππ¦ 2 π + 1 β π¦ = π¦π π + 1 = π¦π + π¦ πβ1 π π+1 π+1β π¦ 2 ππ¦ π¦π π β1 π + 1 β π¦ β π¦π πβ1 π β1 π(π + 1) π+1β π¦ π + 1 β π¦ πβ1 ππ¦ 2 + π β π¦π π +π π¦π + π (π + 1 β π¦)2 π + 1 β π¦ π +π π¦π π β1 π + 1 β π¦ β π¦π πβ1 π 2 + π π + 1 β π¦ π β1+πβ1+2 π 2 + π π +π π + 1 β π¦ π +π π¦π π+1β π¦ ππ¦ π+1= π¦ π+1 π+1 = π¦ π+1 1= π¦
π¦π 1 π β1 π +
1 β π¦ β π¦π πβ1 π + 1 β π¦ π +π π 2 + π π +π π + 1 β π¦ π +π 0 1 π¦π π β1 π¦π π β1 π¦π π β1 π + 1 β π¦ β π¦π π 2 + π π +π 0 1 π + 1 β π¦ β π¦π 2 + π π +πβ1 π 0 1 π¦ π β1 π¦ π π β1 π πβ1 π π +πβ1 1 π¦ β π π β1 π 0 π = π π +π ππ¦ π +π ππ¦ πβ1 ππ¦ π + 1 β π¦ β π¦π π + 1 π +πβ1 βπ +1 π+1β π¦ π2 + π π + 1 β π¦ β π¦π π π + 1 π +πβ1 π +πβ1 π 0 πβ1 πβ1 0 1 ππ¦ π + 1 β π¦ β π¦π πβ1 π 2 + π π + 1 β π¦ π +π π 2 + π 0 1 π2 + π πβ1 ππ¦ πβ1 ππ¦ π +πβ1βπ +1 π + 1 β π¦ β π¦π π + 1 π +πβ1 = π π πβ1 ππ¦ Como m, n, r son constantes son sacadas de la integral π π 1 π+1 1 π¦ π +πβ1 π β1 π + 1 β π¦ β π¦π πβ1 ππ¦ 0 π + 1 β π¦ β π¦π = π + 1 β π¦(1 + π) = π + 1 (1 β π¦) Nos queda entonces π π π π π π 1 π+1 1 π¦ π β1 π+1 πβ1 1 1β π¦ πβ1 0 1 π π¦ 0 (1 β π¦) πβ1 ππ¦ 0 π + 1 πβ1 π + 1 π +πβ1 1 π+1 π β1 π¦ π +πβ1 π β1 (1 β π¦) πβ1 ππ¦ ππ¦
Si comparamos con 1 π‘
π₯β1 1 β π‘ π½ π₯, π¦ = 0 π₯β1= πβ1 β π₯ = π π¦β1= πβ1 β π¦ = π Reemplazamos los nuevos valores = 1 π π π+1 π π½(π, π) β¦ Rta π¦ β1 ππ‘ ; π₯>0 π¦>0
Advertisement