Familia ttl

2,348 views

Published on

Published in: Devices & Hardware
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
2,348
On SlideShare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
76
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Familia ttl

  1. 1. ´ Universidad Catolica ˜ ´“Nuestra Senora de la Asuncion” ´ Sede Regional AsuncionFacultad de Ciencias y Tecnolog´ ıa Departamento de Ingenier´ ıa ´ ´ Electronica e InformaticaCarrera de Ingenier´ Electronica ıa ´ Sistemas Digitales I ´ Ing. Geronimo Bellasai Mart´ ınez, Manuel <manumart87@gmail.com> Ram´ ırez, Pedro <pedroramirez22@gmail.com> Introducci´n a las Familias L´gicas o o 30 de agosto de 2012
  2. 2. ´INDICE 2´Indice1. Circuitos Integrados Digitales por Familia 32. Par´metros caracter´ a ısticos de circuitos digitales 33. Carater´ısticas El´ctricas de TTL e 4 3.1. Voltajes de Entrada y Salida . . . . . . . . . . . . . . . . . . . . 4 3.2. Corrientes M´ximas de Entrada y Salida . . . . . . . . . . . . . . a 5 3.3. Capacidad de Carga (FAN OUT) . . . . . . . . . . . . . . . . . . 64. Inmunidad al ruido 7 4.1. Corrientes de Cortocircuito . . . . . . . . . . . . . . . . . . . . . 9 4.2. Manejo de entradas abiertas y no usadas . . . . . . . . . . . . . . 105. Consideraciones pr´cticas sobre circuitos TTL a 116. Tipos de salidas 127. Evoluci´n de las familias TTL o 15Introducci´n o Una familia l´gica es una colecci´n de CIs(Circuitos Integrados) que tienen o ocaracter´ ısticas el´ctricas similares en sus entradas, salidas y circuiter´ interna, e ıapero que realizan diferentes funciones l´gicas. o
  3. 3. 1 Circuitos Integrados Digitales por Familia 31. Circuitos Integrados Digitales por Familia Las familias l´gicas m´s importantes son: o a 1. RTL = Resistor Transistor Logic 2. DTL = Diode Transistor Logic 3. TTL = Transistor Transistor L´gic o 4. HLL = High Level Logic 5. ECL = Emitter Coupled Logic 6. CMOS = Complementary Metal Oxide Semiconductor 7. I2L = Integrated Injection Logic 8. HTL = High Threshold Logic2. Par´metros caracter´ a ısticos de circuitos digi- talesNiveles l´gicos de tensi´n de entrada y de salida. Para representar los o odos valores l´gicos (“0” y “1”). VIHmin , VILmax , VOHmin , VOLmax . oDos tensiones umbral (una para cada estado l´gico). Tensi´n de entra- o oda a partir de la cual la salida comienza a cambiar de estado.Dos m´rgenes de ruido (uno para cada valor l´gico). Variaci´n de a o otensi´n admisible a la entrada de un circuito l´gico sin que la salida del mismo o ocambie de estado, es decir, sin que el circuito “detecte” un nivel l´gico diferente. oAbanico de entrada (Fan-in). N´mero m´ximo entradas que el circuito u al´gico puede tener. oAbanico de salida (Fan-out). N´mero m´ximo de entradas de otros cir- u acuitos l´gicos que la salida de una puerta puede alimentar manteniendo los oniveles l´gicos. oTiempo o retardo de propagaci´n. Media aritm´tica de los tiempos de o epropagaci´n del cambio de estado de la entrada a la salida en los casos en que ola salida pasa del estado “1” al “0” y viceversa.Potencia consumida. La requerida por la puerta para estar funcionando al50 %, es decir, tanto tiempo en el estado “1” como en el “0”. T´ıpicamente hay que buscar un compromiso entre los valores ´ptimos de los odistintos par´metros. (Ejemplo: tiempo de propagaci´n y potencia disipada) a o
  4. 4. LVLSDFLyQ GH SRWHQFLD 5HWDUGR )DPLOLD &026 1~PHUR P:RPSXHUWD
  5. 5. WS (VWiWLFD 0+] 0+] QDQRVHJ
  6. 6. $ 026 GH DOWD YHORFLGDG ısticas El´ctricas de TTL 3 Carater´ e + 4 026 GH DOWD YHORFLGDG FRPSDWLEOH FRQ 77/ +7 026 DYDQ]DGD 3. Carater´ ısticas El´ctricas de TTL e $ 026 DYDQ]DGD FRPSDWLEOH FRQn77/ A continuaci´ se define un conjunto de caracter´ o $7 ısticas de operaci´n a cualquier o familia l´gica, sin embargo, se discuten solamente los valores t´ o ıpicos de TTL. Si requiere informaci´n correspondiente a las otras familias, hay que consultar o los manuales del fabricante. Los datos num´ricos que se dan en esta secci´n e o $5$7(5Ì67,$6 (/e75,$6 ( 77/ corresponden al circuito 7400. $ FRQWLQXDFLyQ VH GHILQH XQ FRQMXQWR GH FDUDFWHUtVWLFDV GH RSHUDFLyQ DSOLFDEOHV D FXDOTXLHU IDPLOLD 3.1. Voltajes de Entrada y SalidaOyJLFD VLQ HPEDUJR VH GLVFXWHQ VRODPHQWH ORV YDORUHV WtSLFRV GH 77/ 6L VH UHTXLHUH O LQIRUPDFLyQFRUUHVSRQGLHQWH D ODVfabricante proporciona informaci´n sobre losORV PDQXDOHV GHOm´ El RWUDV IDPLOLDV KD TXH FRQVXOWDU voltajes m´ximos y IDEULFDQWH /RV GDWRV o a ınimosQXPpULFRV TXH VH GDQ HQ HVWD VHFFLyQ FRUUHVSRQGHQ DO FLUFXLWR permisibles y garantizados en las entradas y salidas de sus compuertas, en estado alto y bajo, de acuerdo a la siguiente nomenclatura. 92/7$-(6 ( (175$$ voltaje reconocido como un 0 l´gico en la entrada. (m´ximo V . Nivel de 6$/,$ o a IL 0.8V). (O IDEULFDQWH SURSRUFLRQD LQIRUPDFLyQ VREUH ORV YROWDMHV Pi[LPRV PtQLPRV SHUPLVLEOHV JDUDQWL]DGRV HQ ODV HQWUDGDV de voltaje GH VXV FRPSXHUWDVogico HVWDGR DOWR EDMR GH DFXHUGR D OD VIH . Nivel VDOLGDV reconocido como un 1 l´ HQ en la entrada. (m´ ınimo 2V).VLJXLHQWH QRPHQFODWXUD VOL . Nivel de voltaje garantizado de una salida en 0 l´gico. (m´ximo o a 9,/ 1LYHO GH 0.4V). UHFRQRFLGR FRPR XQ OyJLFR HQ OD HQWUDGD Pi[LPR 9
  7. 7. YROWDMH 9,+ 1LYHO GH YROWDMH UHFRQRFLGR FRPR XQ OyJLFR HQ OD HQWUDGD PtQLPR 9
  8. 8. 92/ 1LYHO GHVYROWDMH JDUDQWL]DGR GH XQD VDOLGD HQ salida enPi[LPR 9
  9. 9. OH . Nivel de voltaje garantizado de una OyJLFR 1 l´gico. (m´ o ınimo 2.4V). 92+ 1LYHO GH YROWDMH JDUDQWL]DGR GH XQD VDOLGD HQ OyJLFR PtQLPR 9
  10. 10. En la siguiente figura se ilustra el significado de los voltajes anteriores. (Q OD VLJXLHQWH ILJXUD VH LOXVWUD HO VLJQLILFDGR GH ORV YROWDMHV DQWHULRUHV 9R 9LQ Y Y $OWR $OWR +
  11. 11. +
  12. 12. 0.4v 9R+PLQ
  13. 13. Y Y 9,+PLQ
  14. 14. 0.4v 9,/PD[
  15. 15. Y 9R/PD[
  16. 16. Y %DMR Y %DMR/
  17. 17. /
  18. 18. Y6H REVHUYD TXH Figura 1: Niveles de Tensi´n de una se˜al TTL. o n Ö 6L Y 9LQ Y HO IDEULFDQWH QR DVHJXUD FRPR UHFRQRFHUi OD HQWUDGD VL FRPR FHUR R Se observa que: FRPR XQR
  19. 19. =RQD 3URKLELGD
  20. 20. Ö 8QD VHxDO GH HQWUDGD 9LQ SXHGH WHQHU XQ UXLGR GH XQD DPSOLWXG GH Y VLQ FDXVDU SUREOHPDV GH RSHUDFLyQ PDUJHQ GH UXLGR
  21. 21. 51
  22. 22. 3.2 Corrientes M´ximas de Entrada y Salida a 52º I.T.I (ELECTRICIDAD) Electrónica Digital (HB4)T-4 “Introducción a las familias lógicas” Si 0,8 VIN 2V el fabricante no asegura como reconocer´ la entrada a (si como cero o como uno) (Zona Prohibida). Si la tensión de entrada mínima a nivel alto de una puerta tiene como valor VIHmín, latensión mínima de salida a nivel alto debe naligual entrada a VIHmín.puede tener ruido de una Una se˜ de o superior (VIN Pero para evitar la ser amplitud de 0.4V sininfluencia de ruidos que afecten a la siguiente puerta, no se permitirá una tensión de salida causar problemas de operaci´n (margen de ruido). oinferior a VIHmín más el margen de ruido a nivel alto (VNIH): 3.2. V 2º I.T.I (ELECTRICIDAD) OHmín Corrientes M´ximas de Entrada y Salida a = VIHmín + VNIH Electrónica Digital (HB4) T-4 “Introducción a las familias lógicas” Todo dispositivo que se conecta a la salida de otro inyecta o extrae corriente Para determinar el valor de VOLmáx aplicamos el mismo criterio pero utilizando el margen al primero; entonces se dice que el primero se carga, o que el segundo es la cargade ruido a nivel bajo la tensión de entrada mínima a nivel alto de una puerta tiene como valor VIHmín, la Si (VNIL): del primero. Los par´metros nos dicen para antalacarga (medida en corriente) puede a o superior a V . Pero cu´ tensión mínima de salida a nivel alto debe ser igual evitar IHmín VOLmáx = VILmáx - VNIL influencia de ruidos que afecten a la siguiente puerta, nol´gica. una tensión de salida manejar una compuerta se permitirá o inferior a VIHmín más el margen de ruido a nivel alto (VNIH): • Margen de ruido a nivel bajo (VNIL): IOHOHmín = VIHmín + VNIH de V Corriente salida en alto (400µA m´ximo). a VNIL IOL Corriente = VILmáx - VOLmáx de salida en bajo (−16mA m´ximo). a Para determinar el valor de VOLmáx aplicamos el mismo criterio pero utilizando el margen de ruido a nivel bajo (VNIL): IIH Corriente • Margen de ruido a nivel alto (VNIH): = V V -V de entrada en alto (40µA m´ximo). a OLmáx ILmáx NIL I Corriente de entrada en bajo (1,6mA m´ximo). • Margen de ruido a nivel bajo (VNIL): IL a VNIH = VOHmín - VIHmín VNIL = VILmáx - VOLmáx 2.1.3.- Corrientes. de ruido a nivel alto (V • Margen NIH): “0” El fabricante nos da los valores de las corrientes de entrada: IIL VNIH = VOHmín - VIHmín • IILmáx ⇒ Intensidad máxima de la entrada de una puerta cuando está en estado bajo (el +5V signo 2.1.3.- Corrientes. esta corriente fluye negativo indica que “0” hacia el exterior delnos da los valores de las corrientes de entrada: El fabricante dispositivo). I IIHIL • IIHmáx⇒ Intensidad Intensidad máxima de la entrada de • IILmáx ⇒ máxima de entrada de “1” una puerta cuando está en estado bajo (el una puerta cuando está en estado alto. +5V signo negativo indica que esta corriente fluye Figura 4-6. Corrientes de entrada hacia el exterior del dispositivo). I Figura 2: Corriente de Entrada. “1” IH • IIHmáx⇒ Intensidad máxima de entrada de Y de salida: IIL una puerta cuando está en estado alto. Figura 4-6. Corrientes de entrada • IOLmáx ⇒ Capacidad que tiene la puerta para IOL IIL absorber una intensidad cuando la salida se Y de salida: “1” IIL encuentra a nivel bajo. La puerta actúa como “0” sumidero deOLmáx ⇒ Capacidad que tiene la puerta para • I corriente. IOL IIL absorber una intensidad cuando la salida se “1” • IOHmáx ⇒ Intensidad que puede La puerta actúa como encuentra a nivel bajo. suministrar la IIH“0” sumidero de corriente. puerta cuando la salida está a nivel alto. En este caso laIOHmáx ⇒ Intensidadcorriente (fuente) la • puerta entrega que puede suministrar IOH IIH IH a las entradas de las puertas de está a nivel alto. En “0” puerta cuando la salida carga. este caso la puerta entrega corriente (fuente) IOH “1”IH I a las entradas de las puertas de carga. “0” “1” Figura 4-7. Corrientes de salida Figura 4-7. Corrientes de salidaUniversidad Politécnica de Cartagena. Departamento de Tecnología Electrónica Figura 3: Corriente de Salida. 6 Universidad Politécnica de Cartagena. Departamento de Tecnología Electrónica 6
  23. 23. 3.3 Capacidad de Carga (FAN OUT) 6 3.3. Capacidad de Carga (FAN OUT) Como se dijo, la capacidad de carga o FAN OUT se define como el n´mero u m´ximo de compuertas que pueden ser conectadas a la salida de una compuerta a sin superar la capacidad de corriente de ´sta. e 2º I.T.I (ELECTRICIDAD) As´ cuando se dice que una puerta tiene un FAN OUTElectrónica Digital (HB4) ı, de 5, significa que T-4 “Introducción a las familias lógicas”2º I.T.I (ELECTRICIDAD) esta compuerta puede alimentar o drenar sin problemasElectrónica Digital (HB4) la corriente a 5 puertasT-4 “Introducción a las a su salida. En ocasiones el fabricante especifica este dato menciona- conectadas familias lógicas” do que la puerta soporta 5 cargas t´ 2.1.4.- Fan-out. ıpicas de la familia en cuesti´n. o Las compuertas TTL 54/74 est´n dise˜adas para un fan-out de 10 com- a n 2.1.4.- Fan-out.decir,salida de una puerta lógica se conecta a una o cargas t´ de otras puertas puertas,Cuando la pueden manejar adecuadamente 10 más entradas TTL. es ıpicas se genera una carga en la puerta excitadora. Existe un límite para el númerola corriente de Al la salida de m´s puerta lógica se conecta a una o más excitadora, otrasentradas que conectar una puertas de carga a una puerta entradas de de puertas a Cuando cierta puerta puede excitar. Este límite se denomina fan-out o cargabilidad de la puerta. unase genera una carga en laypuerta excitadora. Existe un límite para el número de entradas que ha- fuente aumenta con ello la ca´ de tensi´n interna de la puerta excitadora ıda o ciendo que conectar on Este límitedeOH disminuya. Si secargabilidad deumerode fuente Al la tensi´ de salida V carga a una puerta oexcitadora, uncorriente excesivouna cierta puerta puede excitar. más puertas se denomina fan-out conecta la n´ puerta. la de aumenta yde carga, caída de tensión interna de la puerta excitadora haciendo que lam´ puertas con ello la la tensi´n VOH puede caer por debajo de su valor tensión o ınimo Al OH min , lo OH disminuya.de un conectaen número excesivo de puertas circuito.laAdem´VOH V conectar más puertas Si se fallo unaelpuerta excitadora, la corriente de tensión s al de salida V que supone carga a un funcionamiento del de carga, fuente aaumenta y puede caer caída de tensiónvalor mínimola OH mín, loexcitadora haciendo que funcionamiento aumentar la por debajo de su interna de V puerta disipaci´n de fallo en el la tensión con ello corriente de fuente, aumenta la que supone un potencia de la puerta ode salida VOH disminuya. Si se al aumentar la corriente de fuente, aumenta la disipación de potencia de la excitadora. Además conecta un número excesivo de puertas de carga, la tensión VOH del circuito.puede caerpuerta excitadora. valor mínimo VOH mín, lo que supone un fallo en el funcionamiento por debajo de su +5Vdel circuito. Además al aumentar la corriente de fuente, aumenta la disipación de potencia de lapuerta excitadora. ‘1’ IOH (fuente) +5V ‘1’ IIH(1) IIH(2) IIH(n) ‘1’ IOH (fuente) ‘1’ IIH(1) Figura 4-8. Carga en estado alto. IIH(2) IIH(n) Figura 4: Carga en estado Alto.+ 5V Figura 4-8. Carga en estado alto. IIL(1) IOL (absorbida) ‘0’ + 5V + 5V ‘1’ IIL(1) IOL (absorbida) IIL(2) ‘0’ + 5V ‘1’ + 5V IIL(2) IIL(n) + 5V Figura 4-9. Carga en estado bajo. IIL(n) La corriente total de sumidero (absorbida) también aumenta con cada entrada que se añade, como muestra la Figura 4-9. Al aumentar esta corriente, la caída de tensión interna de la puerta excitadora aumenta 4-9. Cargaque estado bajo. Si se añade un número demasiado Figura haciendo en VOL aumente. Figura 5: Carga en estado Bajo grande de puertas, VOL se hará mayor que VOLmáx produciéndose un dato erróneo en la salida. La corriente totalde cumplirse: (absorbida) también aumenta con cada entrada que se A de sumidero IOL ≥ ∑ IL 2ºetapaañade, como muestra la Figura 4-9. Al aumentar Iesta corriente, la caída de tensión interna dela puerta excitadora aumenta haciendo que VOL aumente. Si se añade un número demasiado OH ≥ ∑ IH 2ºetapagrande de puertas, VOL se hará mayor que IVOLmáx Iproduciéndose un dato erróneo en la salida. A de cumplirse: IOL ≥ ∑ IIL 2ºetapa IOH ≥ ∑ IIH 2ºetapa Universidad Politécnica de Cartagena. Departamento de Tecnología Electrónica 7
  24. 24. 4 Inmunidad al ruido 7 La corriente total de sumidero (absorbida) tambi´n aumenta con cada entra- eda que se a˜ade, como muestra la Figura 5. Al aumentar esta corriente, la ca´ n ıdade tensi´n interna de la puerta excitadora aumenta haciendo que VOL aumente. oSi se a˜ade un n´mero demasiado grande de puertas, VOL se har´ mayor que n u aVOLmax produci´ndose un dato err´neo en la salida. e o A de cumplirse: IOL IIL 2da. etapa (1) IOH IIH 2da. etapa (2)4. Inmunidad al ruido 2º I.T.I (ELECTRICIDAD) Electrónica Digital (HB4) T-4 “Introducción a las familias lógicas” Se denomina ruido a cualquier perturbaci´n involuntaria que puede originar oun cambio no deseado en la salida del circuito. El ruido puede generarse exter-namente por la presencia de escobillas en motores o interruptores, por acoplo 2.1.2.- Inmunidad al ruido.por conexiones o l´ ıneas de tensi´n cercanas o por picos de la corriente de ali- omentaci´n.denomina ruido a cualquier perturbación ruido, los que puede originar un deben tener Se Para no verse afectado por el involuntaria circuitos l´gicos cambio o ociertadeseado en la salida del circuito. El ruido puede generarse externamente por la presencia no inmunidad al ruido, que se define como la capacidad para tolerar fluctua- de escobillas en motores o interruptores, por acoplo por conexiones o líneas de tensiónciones en lapor picosn no corriente de alimentación. Para no verse que cambie ruido, los cercanas o tensi´ de la deseadas en sus entradas sin afectado por el el estado de osalida. lógicos deben tener cierta inmunidad al ruido, que se define como la capacidad para circuitos tolerarejemplo, si en la tensión no deseadas en sus entradasin que cambie el estado deque la Por fluctuaciones la tensi´n de ruido en la entradas de una puerta hace o salida.tensi´n de nivel alto caiga por debajo de VIH min el funcionamiento no ser´ pre- o adecible. Por ejemplo, si lamodo si el ruido entradaqueuna puerta hace de entrada de Del mismo tensión de ruido en la hace de la tensi´n que la tensión para el oestado alto caiga por debajoencima el funcionamiento nocreapredecible. Del mismo modo si el nivel bajo pase por de VIHmín de VILmax , se será una condici´n indeterminada ocomo se ilustrala tensión de entrada para el estado bajo pase por encima de VILmáx, se crea ruido hace que en la Figura 6. una condición indeterminada como se ilustra en la Figura 4-4. VOH VIH 0 VIHmín VILmáx VOL 0 VIL Figura 4-4. Efecto del ruido. Para evitar la presencia de errores provocados por el ruido. fabricantes establecen un Figura 6: Efecto del ruido, los margen de seguridad conocido como “MARGEN DE RUIDO” para no sobrepasar los valores críticos de tensión. presencia de errores provocados por el ruido, los fabricantes Para evitar laestablecen la Figura 4-5 tenemos los valoresconocidolas tensiones de entrada y salida de una En un margen de seguridad críticos de como “MARGEN DE RUIDO”para no lógica y los márgenes de ruidocr´ alto y bajo. on. puerta sobrepasar los valores a nivel ıticos de tensi´ Salida de Entrada de 1 1 la puerta 1 VOH(mín) la puerta 2 VNIH VIH(mín) VIL(máx) VNIL VOL(máx) 0 0
  25. 25. VIL Figura 4-4. Efecto del ruido. Para evitar la presencia de errores provocados por el ruido, los fabricantes establecen unmargen de seguridad conocido como “MARGEN DE RUIDO” para no sobrepasar los valorescríticos de tensión. 4 Inmunidad al ruido 8 En la Figura 4-5 tenemos los valores críticos de las tensiones de entrada y salida de unapuerta lógica y los márgenes de ruido a nivel alto y bajo. Salida de Entrada de 1 1 la puerta 1 VOH(mín) la puerta 2 VNIH VIH(mín) VIL(máx) VNIL VOL(máx) 0 0 Figura 4-5. Inmunidad al ruido. Figura 7: Inmunidad al ruido. En la Figura 7 tenemos los valores cr´ ıticos de las tensiones de entrada y salida de una puerta l´gica y los m´rgenes de ruido a nivel alto y bajo. o aUniversidad Politécnica de Cartagena. Departamento de Tecnología Electrónica Si la tensi´n de entrada m´ o ınima a nivel alto de una puerta tiene como valor 5 VIH min , la tensi´n m´ o ınima de salida a nivel alto debe ser igual o superior a VIH min . Pero para evitar la influencia de ruidos que afecten a la siguiente puerta, no se permitir´ una tensi´n de salida inferior a VIH min m´s el margen de ruido a o a a nivel alto (VN IH ): VOH min = VIH min + VN IH (3) Para determinar el valor de VOLmax aplicamos el mismo criterio pero uti- lizando el margen de ruido a nivel bajo (VN IL ): VOLmax = VILmax − VN IL (4) Margen de ruido a nivel bajo (VN IL ): VN IL = VILmax − VOLmax (5) Margen de ruido a nivel alto (VN IH ): VN IH = VOH min − VIH min (6)
  26. 26. 4.1 Corrientes de Cortocircuito 94.1. Corrientes de Cortocircuito Capítulo 5 Familias Lógicas $Vt FXDQGR VH GLFH TXH XQD SXHUWD WLHQH XQ )$1 287 GH VLJQLILFD TXH HVWD SXHGH DOLPHQWDU R Hay dos condiciones OD FRUULHQWH GH SXHUWDV FRQHFWDGDV D VX VDOLGD ser evitadas para las puer- GUHQDU VLQ SUREOHPDV de cortocircuito que deber´n (Q RFDVLRQHV HO IDEULFDQWH a HVSHFLILFD HVWD GDWR PHQFLRQDQGR TXH OD SXHUWD VRSRUWD FDUJDV WtSLFDV GH OD IDPLOLD HQ FXHVWLyQtas con salida en Totem Pole: /DV FRPSXHUWDV 77/ HVWiQ GLVHxDGDV SDUD XQ IDQRXW GH FRPSXHUWDV HV GHFLU SXHGHQ PDQHMDU DGHFXDGDPHQWH FDUJDV WtSLFDV 77/ Capítulo 5 Familias LógicasSalida en cortocircuito SXHUWD WLHQH XQ )$1Cuando la salida de una puerta l´gica $Vt FXDQGR VH GLFH TXH XQD a tierra .- 287 GH VLJQLILFD TXH HVWD SXHGH DOLPHQWDU R ose conectaVLQ HVWD 255,(17(6 ( 2572,58,72 VRSRUWD FDUJDV WtSLFDVcasos se tieneIDEULFDQWH la GUHQDU HVSHFLILFD (por accidente)TXH tierra, FRQHFWDGDV D VX los GH(Q RFDVLRQHV FXHVWLyQ SUREOHPDV OD FRUULHQWH GH GDWR PHQFLRQDQGR a OD SXHUWDV el peor de VDOLGD OD IDPLOLD HQ HO cuando SXHUWDsalida intenta GRV FRQGLFLRQHV GH FRUWRFLUFXLWR (transistor Q4 SDUD ODVsaturaci´n y 7RWHP en corte); +D 3ROH ir a estado alto, TXH GHEHUiQ VHU HYLWDGDV en SXHUWDV FRQ o HQ Q3 VDOLGDentonces,FRPSXHUWDVFRUWRFLUFXLWR D WLHUUD WtSLFDV 77/SDUD XQ IDQRXW OyJLFD FRPSXHUWDV HV GHFLU SXHGHQ no /DV el fabricante FDUJDV XDQGR OD VDOLGD GH XQD SXHUWD GHxima de SRU DFFLGHQWH
  27. 27. D PDQHMDU 6DOLGD HQ 77/ HVWiQ GLVHxDGDV DGHFXDGDPHQWH especifica una corriente m´ VH FRQHFWD cortocircuito que adeber´ permanecer GH ORV mucho tiempo. VDOLGD LQWHQWD LU D HVWDGR DOWR WUDQVLVWRU 4 HQ a WLHUUD HO SHRU por FDVRV VH WLHQH FXDQGR OD VDWXUDFLyQ 4 HQ FRUWH
  28. 28. HQWRQFHV HO IDEULFDQWH HVSHFLILFD XQD FRUULHQWH Pi[LPD GH FRUWRFLUFXLWR 255,(17(6SHUPDQHFHU SRU PXFKR WLHPSR TXH QR GHEHUi ( 2572,58,72 Vcc = +5 V +D GRV FRQGLFLRQHV GH FRUWRFLUFXLWR TXH GHEHUiQ VHU HYLWDGDV SDUD ODV SXHUWDV FRQ VDOLGD HQ 7RWHP 130 3ROH ON Q4 Isc 6DOLGD HQ FRUWRFLUFXLWR D WLHUUD XDQGR OD VDOLGD GH XQD SXHUWD OyJLFD VH FRQHFWD SRU DFFLGHQWH
  29. 29. D WLHUUD HO SHRU GH ORV FDVRV VH WLHQH FXDQGR OD VDOLGD(?)LQWHQWD LU D HVWDGR DOWR WUDQVLVWRU 4 HQ H D1 VDWXUDFLyQ 4 HQ FRUWH
  30. 30. HQWRQFHV HO IDEULFDQWH HVSHFLILFD XQD FRUULHQWH Pi[LPD GH FRUWRFLUFXLWR OFF TXH QR GHEHUi SHUPDQHFHU SRU PXFKR WLHPSR Q3 Vcc = +5 V 6DOLGD HQ FRUWRFLUFXLWR FRQ RWUD VDOLGD XDQGR DFFLGHQWDOPHQWH
  31. 31. VH FRQHFWDQ GRV VDOLGDV GH 130 FRPSXHUWDV WRWHP SROH HO SHUR GH ORV FDVRV VH WLHQH FXDQGR XQD GH ODV VDOLGDV LQWHQWD LU D HVWDGR DOWR PLHQWUDV TXH OD RWUD HVWi HQ EDMR HQWRQFHV HO WUDQVLVWRU 4 GH OD SULPHUD R HO 4 GH OD VHJXQGD Figura 8: Salida en cortocircuito a tierra. ON VH GDxDUiQ VL OD FRQGLFLyQ GXUD PXFKR WLHPSR Q4 Isc D1 H (?) Vcc = +5 V OFF Q3Salida en cortocircuito con otra salida.- Cuando (accidentalmente) se 130 Iscconectan dos salidas de compuertas totem pole, el peor de los casos se tiene ON Q4 D1 H(?)cuando una de las salidas intenta ir a estado alto, mientras que la otra est´ en a 6DOLGD HQ FRUWRFLUFXLWR FRQ RWUD VDOLGD XDQGR DFFLGHQWDOPHQWH
  32. 32. VH FRQHFWDQ GRV VDOLGDV GH OFF Q3bajo, FRPSXHUWDV WRWHP transistorGH ORV de la VH WLHQH FXDQGRel QGH de VDOLGDV LQWHQWD LU seHVWDGR ar´n entonces, el SROH HO SHUR Q4 FDVRV primera o XQD 3 ODV la segunda D da˜ a nsi la condici´n TXH OD RWUD HVWi HQtiempo. DOWR PLHQWUDV dura mucho EDMR HQWRQFHV HO WUDQVLVWRU 4 GH OD SULPHUD R HO 4 GH OD VHJXQGD o VH GDxDUiQ VL OD FRQGLFLyQ GXUD PXFKR WLHPSR Vcc = +5 V 130 OFF Q4 Isc D1 Vcc = +5 V L(?) ON Q3 130 Isc ON Q4 D1 53 H(?) OFF Q3 Vcc = +5 V 130 OFF Q4 Isc D1 L(?) ON Q3 53 Figura 9: Salida en cortocircuito con otra salida.
  33. 33. 4.2 Manejo de entradas abiertas y no usadas 10 4.2. Manejo de entradas abiertas y no usadas En las compuertas TTL las entradas abiertas(no usadas) act´an como un 1 uCapítulol´gico, ya que se requiere que una corriente circule de las entradas del emisorLógicas 5 o Familias 0$1(-2 ( tierra (´ VCESAT ) para 12se produzca un 0. Sin embargo, los fab- m´ltiple a (175$$6 $%,(57$6 que 86$$6 u o ricantes de TTL recomiendan no dejar entradas abiertas, porque ´stas son su- e (Q ODV FRPSXHUWDV ruidos, teni´ndose DELHUWDV QR XVDGDV
  34. 34. DFW~DQ FRPR XQ esto: ceptibles a 77/ ODV HQWUDGDV las siguientes alternativas para evitar OyJLFR D TXH VH eUHTXLHUH TXH XQD FRUULHQWH FLUFXOH GH ODV HQWUDGDV GHO HPLVRU P~OWLSOH D WLHUUD y 9(VDW
  35. 35. SDUD TXH VHSURGX]FD XQ 6LQ HPEDUJR ORV IDEULFDQWHV GH 77/ UHFRPLHQGDQ QR GHMDU HQWUDGDV DELHUWDV SRUTXHpVWDV VRQ VXVFHSWLEOHV D “Pull Up” y “Pull Down”.- DOWHUQDWLYDV SDUD HYLWDU HVWR una Resistencias UXLGRV WHQLpQGRVH ODV VLJXLHQWHV Las entradas no usadas en compuerta AND, o NAND pueden ser aseguradas a un 1 l´gico, conect´ndolas o a a +5V por medio de una resistencia “pull up”, como seHQ XQD FRPSXHUWD $1 R 1$15HVLVWHQFLDV 3XOO 8S ´3XOO RZQµ /DV HQWUDGDV QR XVDGDV muestra en la siguienteSXHGHQ VHU DVHJXUDGDV D XQ OyJLFR entradas de una 9 SRU PHGLR GHNORUHVLVWHQFLD ´SXOO XSµ figura, en forma similar, las FRQHFWiQGRODV D compuerta OR o XQD se puedenFRPR VH asegurar HQun 0 l´gico conect´ndolas a tierra a ODV HQWUDGDV GHresistencia “pullR 125 VH PXHVWUD a OD VLJXLHQWH ILJXUD HQ IRUPD VLPLODU trav´s de una XQD SXHUWD 25 o a eSXHGHQ DVHJXUDU D XQ OyJLFR FRQHFWiQGRODV D WLHUUD D WUDYpV GH XQD UHVLVWHQFLD ´SXOO GRZQµ down”. +5 V A B Y = A+B 1K Pull Up Y = AB 1K Pull Down A BRQH[LyQ GH (QWUDGDV QR XVDGDV D (QWUDGDV 8VDGDV 2WUD DOWHUQDWLYD SDUD QR GHMDU HQWUDGDV DELHUWDVHV OD GH FRUWRFLUFXLWDU ODV HQWUDGDV QR XVDGDV D ODV RWUD GH OD y Pull-Down TXH Vt VH HVWiQ XVDQGR Figura 10: Resistencias de Pull-Up PLVPD SXHUWDDSURYHFKDQGR OD SURSLHGDG GH LGHPSRWHQFLD GHO iOJHEUD ERROHDQD $O XVDU HVWD FRQH[LyQ VH GHEHWHQHU FXLGDGR DO FDOFXODU HO IDQRXW Q~PHUR GH HQWUDGDV FRQHFWDGDV D XQD VDOLGD
  36. 36. Conexi´n de Entradas no Usadas a ( /$6 )$0,/,$6 /2*,$6 alternativa o 7$%/$ 203$5$7,9$ Entradas Usadas.- Otra para no dejar entradas abiertas es la de cortocircuitar las entradas no usadas a la otra de la misma puerta que s´ se est´ usando, aprovechando la propiedad de ı a )$0,/,$ idempotencia del ´lgebra booleana. Al usar esta conexi´n se debe tener1LYHO RVWR 9HORFLGDG a LVLSDFLyQ )DQRXW 9ROWDMHV o 1LYHO cuidado al calcular el “fanout” (n´mero de entradas conectadas a una salida).%DMR QVHJ
  37. 37. GH SRWPZ
  38. 38. u 5HTXHULGRV $OWR 86 57/ 7/ 77/ (/ $/72 026 %$-$ $/72 D 9FF 77/ %$-$ 9HORFLGDG 77/ 6FKRWWN 77/ 6FKRWWN %DMD 3RWHQFLD ,17(5)$(6 (175( )$0,/,$6 /Ð*,$6SHQGLHQWH
  39. 39. 54
  40. 40. Descriptor Fan-out tpD (ns) Potencia/puerta (mW) 74XX 10 9 10umo 74LXX 2,5 33 1 74SXX 12,5 3 19 ajo consumo 74LSXX 5 9,5 2 5 Consideraciones pr´cticas sobre circuitos TTL a 11avanzada 74ASXX 1,5 8,5 bajo consumo 74ALSXX 4 5. a 1 Consideraciones pr´cticas sobre circuitos TTL Un circuito TTL con unas salida totem-pole tiene limitada la cantidad de corriente que puede absorber (16 mA para la l´gica TTL est´ndar y a 20 mA o a para la l´gica TTL AS). En muchas aplicaciones especiales, una puerta tiene que o excitar a dispositivos externos tales como LEDs, l´mparas o rel´s, que pueden a ederaciones prácticas requerir m´s corriente que la que proporcionan estos dispositivos. sobre circuitos TTL. a Generalmente para excitar LEDs, l´mparas o rel´s, se utilizan circuitos con a euito TTL con unas salida totem-pole tiene limitada la cantidad de corriente que salidas en colector abierto. El transistor de salida se conecta al LED o a laer (16 mA para la lógica TTLl´mpara como se muestra en la lógica TTLSe utiliza una resistencia de limitaci´n estándar y a 20 mA para la Figura 11. AS). a ohas aplicaciones especiales, para mantener la corriente por debajo de la corriente m´xima del LED. Cuando una puerta tiene que excitar a dispositivos externos a Ds, lámparas o relés, que pueden requerir puerta sea un nivel bajo, el proporcionan a. la salida de la más corriente que la que LED se encender´vos. +5 V mente para excitar LEDs, lámparas o relés, seos con salidas en colector abierto. El transistoronecta al LED o a la lámpara como se muestra-19. Se utiliza una resistencia de limitación paraorriente por debajo de la corriente máxima del la salida de la puerta sea un nivel bajo, el LED Figura 4-19 Excitación de un LED. Figura 11: Excitaci´n de un LED. onsideración importante es que las entradas sin conectar de una puerta TTL Otra consideraci´n importante es que las entradas sin conectar de una puerta osi tuvieran un nivel lógico alto. Sinact´an como si tuvieransensibilidad al ruido, Sin embargo, debido a la TTL embargo, debido a la un nivel l´gico alto. es u o las entradas no utilizadas desconectadas.ruido, es mejor no dejar las entradas no utilizadas desconectadas. sensibilidad alolitécnica de Cartagena. Departamento de Tecnología Electrónica 16
  41. 41. 2º I.T.I (ELECTRICIDAD) Electrónica Digital (HB4) T-4 “Introducción a las familias lógicas” Vcc= +5V 4KΩ 1.6KΩ 130Ω A B X 0 0 1 T4 0 1 1 1 0 16 Tipos de salidas A T1 T2 D3 1 1 0 12 B X T3 D1 D2 1KΩ6. Tipos de salidas 0V Hasta ahora s´lo se ha nombrado de dos entradas. salida totem-pole, pero los cir- o Figura 4-13. Puerta NAND TTL el tipo decuitos TTL disponen de otros tipos de salida: en colector abierto y tri-estado. 4.4.- Tipos de salidas. 1.disponen de otros tipos de Es nombrado el tipo de ysalida totem-pole, peroHay que TTL Totem- pole: salida: en colector abierto tri-estado. usual. los circuitos tener en cuenta que Hasta ahora sólo se ha el tipo de salida m´s a no podemos unir las salidas de circuitos totem-pole (Figura 12) porque se 1. Totem- pole: Es el tipo de salida más usual. Hay que tener en cuenta que no podemos producesalidas de circuitos totem-pole (Figuray4-14) porque se produce una os en el dispositivo. unir las una corriente excesiva dar´ lugar a da˜ corriente ıa n excesiva y daría lugar a daños en el dispositivo. +5V +5V ON OFF A T4 T4 B D3 D3 X C X Y D OFF ON T3 T3 0V 0V Figura 4-14. Uso incorrecto de circuitos con salida totem-pole. Figura 12: Uso incorrecto de circuitos con salida totem-pole. 2. Open–Colector: La salida se toma del colector del transistor T3 (Figura 4-15). Para que el circuito funcione se debe conectar una resistencia de pull-up externa entre la salida y la fuente de alimentación. Cuando T3 no conduce la salida es llevada a Vcc a través de la resistencia externa. Cuando T3 se satura, la salida se lleva a un potencial próximo a 2. OpenColector: La salida se toma del colector del transistor T3 (Figura tierra a través del transistor saturado. 13). Para que el circuito funcione se debe conectar una resistencia de pull-up externadeentre la salida y al corrientela disipación depor tanto la on. Cuando T3 La elección del valor la resistencia es un compromiso entre la velocidad. Las resistencias de valor alto reducen la fuentecolector, y potencia y de de alimentaci´ no potencia, pero también limitanes velocidad. Aún con valorestrav´s de la resistencia externa. conduce la salida la llevada a Vcc a de resistencia bajos el e CuandoenT3 seabierto no es tan rápido como el totem-pole. un potencial pr´ximo a tierra a circuito colector satura, la salida se lleva a o trav´s del transistor saturado. e Universidad Politécnica de Cartagena. Departamento de Tecnología Electrónica 13 La elecci´n del valor de la resistencia es un compromiso entre la disipaci´n o o de potencia y la velocidad. Las resistencias de valor alto reducen al corri- ente de colector, y por tanto la potencia, pero tambi´n limitan la velocidad. e A´n con valores de resistencia bajos el circuito en colector abierto no es u tan r´pido como el totem-pole. a 2º I.T.I (ELECTRICIDAD) Electrónica Digital (HB4) T-4 “Introducción a las familias lógicas” Vcc= +5V R 4KΩ 1.6KΩ A T1 T2 B X T3 D1 D2 1KΩ 0V Figura 4.15. Puerta NAND TTL salida open-colector. Una de las ventajas de las puertas de colector abierto es que sus salidas se pueden Figura 13: Puerta NAND TTL salida open-colector. conectar en paralelo para formar una configuración AND cableada. La función AND cableada resulta de particular interés cuando se deben combinar muchas entradas, pues se elimina la necesidad de disponer de puertas de muchas entradas. En todos los circuitos de AND cableada se requiere una resistencia externa (Figura 4-16). Vcc A V X = V·X·Y·Z A V oc X B B C X X = V·X·Y·Z C X oc D D X E Y E Y oc F F G Z G Z oc H H
  42. 42. T-4 “Introducción a las familias lógicas” Vcc= +5V A A T1 T1 4KΩ R 1.6KΩT T2 2 B B X X T3 T3 6 Tipos de Dsalidas D2 1 D1 D2 1KΩ 1KΩ 13 A T1 0V 0V T2 B X Una de Figura 4.15. Puerta puertas de salida open-colector. las ventajas de las NAND colector abierto es que sus salidas se Figura 4.15. Puerta NAND TTL TTL open-colector. salida pueden conectar en paralelo para formarTuna configuraci´n AND cableada. D1 D2 1KΩ 3 o Una UnalasLa funci´n ANDpuertas de resulta de particular inter´salidas se sese pueden de de ventajas de las las puertascolector abierto es que quees cuando pueden las ventajas de cableada de colector abierto es sus sus salidas deben o 0V conectar en paralelo muchas entradas,configuración ANDAND cableada. función ANDAND conectar en paralelo para formar una configuración la necesidad de La función de combinar para formar una pues se elimina cableada. La disponer cableada resulta de de muchas entradas.cuando se deben combinar muchascableada se cableada resulta de particular interés En todos los circuitos de AND entradas, pues puertas particular interés cuando se deben combinar muchas entradas, pues Figura 4.15. Puerta NAND TTL salida open-colector. se elimina requierenecesidad disponer de puertas de muchas entradas. En En todos se eliminanecesidad resistencia externa (Figura 14). muchas entradas. todos los los la la una de de disponer de puertas de circuitos de ANDANDventajas dese requiere resistencia externa (Figura sus salidas se pueden circuitos de cableada se requiere una una colector abierto es que 4-16). Una de las cableada las puertas de resistencia externa (Figura 4-16). conectar enVcc Vcc para formar una configuración AND cableada. La función AND paralelo cableada resulta de particular interés cuando se deben combinar muchas entradas, pues se elimina la necesidad de disponer de puertas de muchas entradas. En todos los circuitos de AND cableada se requiere una resistencia externa (Figura 4-16). A X = V·X·Y·Z X = V·X·Y·Z A A V Vcc A V V oc ocV X X B B B B C C X = V·X·Y·Z X = V·X·Y·Z C C X X oc ocX X X = V·X·Y·Z D D A V D DA V oc X B X X B E E E E Y Y oc ocY Y X = V·X·Y·Z F FC X F F C oc X D D G X G G Z G Z Z oc ocZ oc E Y H H E Y H H F F (a) Salidas open-colector (a) Salidas open-colector (a) Salidas open-colector (b) SalidasG (b)totem-pole (b) Salidas Salidas totem-pole totem-pole Z G Z oc H Figura 4-16. Conexión AND AND de salidas. Figura 4-16. Conexión de Hsalidas. Vcc Vcc 14: Conexi´(b)AND Vcc salidas. Figura (a) Salidas open-colector on de Vcc Salidas totem-pole (a) (a) (b) (b) Figura 4-16. Conexión AND de salidas. Rp Rp Vcc Rp Rp Vcc (a) (b) Rp R T1 OFFOFF p T1 T1 ON ON T1 T1 ON T1 OFF T2 T2 OFFOFF ‘0’ T2 T2 OFFOFF ‘1’ ‘0’ ‘1’ T2 OFF T2 OFF ‘0’ ‘1’ T3 T3 OFFOFF T3 T3 OFFOFF T3 OFF T3 OFF Figura 4-17. AND AND cableada. (a) o más salidas a ‘0’ .(b) Todas las salidas a ‘1’. a ‘1’. Figura 4-17. cableada. (a) Una Una o más salidas a ‘0’ .(b) Todas las salidas Figura 4-17. AND cableada. (a) Una o más salidas a ‘0’ .(b) Todas las salidas a ‘1’.UniversidadFigura 15: AND cableada. (a) Una o m´s salidas Electrónica Todas Politécnica de Cartagena. Departamento de Tecnología a “0” .(b) a Universidad Politécnica de Cartagena. Departamento de Tecnología Electrónica las salidas a 14 14 “1”. Universidad Politécnica de Cartagena. Departamento de Tecnología Electrónica 14
  43. 43. 6 Tipos de salidas 14 2º I.T.I (ELECTRICIDAD) Electrónica Digital (HB4)2º I.T.I (ELECTRICIDAD) Electrónica Digital (HB4) T-4 “Introducción a las familias lógicas” gicas convencionales tienen dos estados de sali- 3. Tri-estado. Las puertas l´ oT-4 “Introducción a las familias lógicas” da posibles: “0” y “1”. En algunas circunstancias resulta conveniente con- tar con un tercer estado que corresponde a una condici´n de alta impedan- o cia, en la que se permite que la salida flote. 3. Tri-estado. Las puertas lógicas convencionales tienen dos tienen dos estadosposibles: ‘0’ 3. Tri-estado. Las puertas lógicas convencionales estados de salida de salida posibles: ‘0’ y ‘1’. En algunassalidaresulta conveniente contar circuito tercer estadose El voltaje de circunstancias estar´ determinado por el a con un exterior que y ‘1’. En algunas circunstanciasde la puerta resulta conveniente contar mediantetercer estado que con un que conecte. La salida se habilita o se deshabilita una corresponde ase˜al condición de alta impedancia, en la que se permite se permite que la salida flote. corresponde a una condición de alta impedancia, en la que que la salida flote. una de control (Figura 16). Los dispositivos de tres estados se usan en n El voltaje de salida estaráde buses endeterminado salidas circuito exterior que se est´n El voltaje de n determinado por el circuito exterior que se conecte. La salida La salida la creaci´ salida estará los que las por el de varios dispositivos conecte. o a de la habilita sese deshabilitadeshabilitauna señal de control (Figura 4-18). Los 4-18). Los de la puerta se conectadas entre s´ Cada mediante mediante una señal de control (Figura puerta o habilita o se dispositivo puede entonces colocar datos sobre ı. dispositivos de tres estados seestados se habilite la de buses un solo queen los que las salidas de dispositivossiempre y usan ense usan en lasalida de en los dispositivo a la de la l´ınea de tres cuando la creación creación de buses las salidas vez. varios dispositivos están conectadas entre sí. Cada dispositivo dispositivo puede colocar varios dispositivos están conectadas entre sí. Cada puede entonces entonces colocar datos sobre la Las salidas línea cuando seno afectar´n a la denun del bus.un solo dispositivo a la vez. datos sobre la deshabilitadasy cuando se salida se˜al solo de La salidala vez. línea siempre y siempre habilite la habilite la salida dispositivo a de a la puerta se habilita o deshabilita mediante unadel bus. de control C. La a la señal entrada Las salidas deshabilitadas no afectarán del bus. Las salidas deshabilitadas no afectarán a la con una entrada de control C activa a nivel Figura de muestra una puerta señal 16 la puerta se habilita o deshabilita mediante una entrada de control C. La La salida La salida de la puertadecir, la salida deshabilita si C =0. una entrada de control C. La bajo, es se habilita o se habilita mediante Figura 4-18 muestra una puerta conpuertaentrada de control de activa aC activa a nivel bajo, es Figura 4-18 muestra una una con una entrada C control nivel bajo, es decir, la salida se habilita seC =0 decir, la salida si habilita si C =0 A A X X B B C C X X C A B X C A B X 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 1 X X Z 1 X X Z (a) Funcionamiento de C.I. tri- (b) Uso de C.I. con salida tri- (a) Funcionamiento de C.I. tri-estado tri-estado (a) Funcionamiento de C.I. estado (b) Uso de (b) Uso de C.I. con salida tri-estado estado C.I. con salida tri-estado Figura 4-18. Salida tri-estado. FiguraFigura Salida tri-estado. 4-18. 16: Salida tri-estado.4.5.- Otras familiasfamilias TTL. 4.5.- Otras TTL. Poseen características de funcionamiento particulares. Poseen características de funcionamiento particulares. • TTL de bajo (54L/74L): La serie 54L/74L se distingue distingue por su bajo • TTL de bajo consumo consumo (54L/74L): La serie 54L/74L sepor su bajo consumo consumo de potencia. Los valores de valores de las resistencias del circuito sonque las deque las de la de potencia. Los las resistencias del circuito son mayores mayores la puerta estándar. Cuanto mayor seamayor sea la resistencia menor será la y por puerta estándar. Cuanto la resistencia menor será la corriente, corriente, y por consiguiente, menor potencia se disipará. Sin embargo, el ahorro de ahorro dese consiguiente, menor potencia se disipará. Sin embargo, el potencia potencia se paga con una pérdida de velocidad. paga con una pérdida de velocidad. • TTL (54S/74S): Poseen alta velocidad velocidad porque usan transistores • TTL Schottky Schottky (54S/74S): Poseen alta porque usan transistores y diodos y diodos Schottky en lugar de los componentes tradicionales. Schottky en lugar de los componentes tradicionales. • TTL de bajo consumo (54LS/74LS): Combinan consideraciones de • TTL Schottky Schottky de bajo consumo (54LS/74LS): Combinan consideraciones de velocidad y consumoyde potencia. potencia. velocidad consumo de • TTL avanzada y Schottky de bajo de bajo avanzada (54AS/74AS, • TTL Schottky Schottky avanzada y Schottky consumo consumo avanzada (54AS/74AS, 54ALS/74ALS): Son versiones avanzadasavanzadas de S y series S y SL. Existe una versión 54ALS/74ALS): Son versiones de las series las SL. Existe una versión
  44. 44. 7 Evoluci´n de las familias TTL o 157. Evoluci´n de las familias TTL oFamilia Caracter´ısticas 74 Es la m´s antigua, fue introducida en 1963. a 74H High Speed TTL. 74L Low Power TTL. El desarrollo de los transistores Schottky y su introducci´n en los a˜os 70 en la familia TTL hizo obsoletas las familias 74, 74H, 74L. o n 74S Schottky TTL. Es la primera familia que utiliza transistores Schottky. Mejora mucho la velocidad de la serie 74 pero con mucho m´s consumo. a 74LS Low power Schottky TTL. Es la TTL m´s utilizada y la menos costosa Iguala la velocidad de la serie 74 TTL pero consume una quinta parte. a 74AS Advanced Shottky TTL. Ofrece el doble de velocidad que la 74S con la mitad de consumo.74ALS Advanced Low Power Schottky TTL. Ofrece velocidades y consumos mejores que la LS. Rivaliza con la LS. 74F Fast TTL. Posicionada entre la AS y la ALS. Cuadro 1: Evoluci´n de la Familia TTL o

×