New insights to MIEX treatment: Fluorescence spectra across synthetic, natural and waste waters<br />Pedro Palomino & Trea...
Natural Organic Matter<br />Formation<br /><ul><li>Degradation of Terrestrial and Microbial matter
Large, complex and              not fully understood</li></ul>Problems<br /><ul><li>Formation of Disinfection by-Products
Membrane fouling
Increased chemical requirements</li></ul>Natural Organic Matter<br />vanLoon and Duffy, Environmental Chemistry<br />Treat...
Magnetic Ion Exchange Resin<br />3<br />NOM<br />-<br />Structure<br /><ul><li>Magnetic Iron Oxide aids in settling
Large surface area</li></ul>Process<br /><ul><li>Fluidized bed
Short mixing times
Regeneration</li></ul>Cl-<br />Cl-<br />Cl-<br />MIEX<br />+<br />+<br />+<br />+<br />+<br />+<br />+<br />+<br />+<br />...
MIEX Monitoring<br />4<br />Completely Mixed Flow Reactor<br />Current methods<br /><ul><li>DOC - Expensive and less relia...
UV - Simple and reliable, but small data set </li></ul>Raw<br />Treated <br />DOC<br />DOC<br />UV<br />UV<br />Could fluo...
Goals and Objectives<br />5<br />Compare the impact of MIEX treatment on the fluorescence spectra across Surface, Ground, ...
Sampling<br />6<br />2 surface waters <br /><ul><li>10 – 30 mg-C/L</li></ul>1 groundwater <br /><ul><li>5 – 6 mg-C/L</li><...
Isolates of NOM</li></ul>5 leachates<br /><ul><li>300 – 1300 mg-C/L</li></ul>Savannah<br />St. Mary’s River<br />Putnam<br...
Experiments<br />7<br />
Analysis<br />8<br />DOC and UV<br /><ul><li>SUVA = UV/DOC</li></ul>Fluorescence Spectrophotometer<br /><ul><li>Excitation...
Emission: 220 - 600 nm </li></ul>MatLab<br /><ul><li>In-house Program: DI subtraction, normalize by raman & FI
FI = Intensity at EM470/EM520 @ EX370
No inner filter correction & cut out Rayleigh lines
Peak Shift: Location and Intensity </li></ul>Fluorescence Spectrophotometer<br />
Defining Peak Locations<br />9<br />500<br />Rayleigh <br />Line<br />390<br />350<br />Excitation (nm)<br />Terrestrial<b...
Source Regions<br />10<br />Microbial<br />Terrestrial<br />FI = 1.6<br />FI = 2.1<br />IHSS Isolate of NOM from Suwannee ...
Peak Shift<br />11<br />Raw<br /><ul><li>Microbial: (345,225) & (345,280)
Terrestrial: (415,240) & (450,260) </li></ul>Treated<br /><ul><li>Shift to shorter emission wavelengths</li></ul>Conclusio...
Peak Shift - Treated<br />13<br />
NOM Concentration - Raw<br />14<br />DOC<br /><ul><li>Synthetic < Ground < Surface < Waste</li></ul>Intensity<br /><ul><li...
Microbial peaks: Synthetic < Surface < Ground < Waste
Terrestrial peaks > Microbial peaks, except for Waste waters</li></ul>Intensity vs. DOC<br /><ul><li>Microbial intensity i...
16<br />NOM Concentration - Raw<br />
NOM Concentration - Raw<br />17<br />
DOC Removal<br /><ul><li>Waste < Ground < Surface < Synthetic</li></ul>DOC<br /><ul><li>Synthetic < Ground < Surface < Was...
19<br />NOM Concentration - Treated<br />
Upcoming SlideShare
Loading in …5
×

New insights to MIEX treatment: Fluorescence spectra across natural, synthetic, and waste waters

581 views

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
581
On SlideShare
0
From Embeds
0
Number of Embeds
5
Actions
Shares
0
Downloads
4
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • a synthesis of a wide range of data from our research group
  • Newer, not New
  • SUVA and FI: Optical properties, Simple, Rapid to determine, Robust, Reproducible.
  • Concentrations are lower or higher, not smaller or larger
  • No inner filter correction, 100 samples
  • original idea for these regions was from literature, then used in-house data to help refine the regions
  • Microbial:low SUVA/high FI, Terrestrial: high SUVA/low FI
  • Shorter wavelength = higher energy, Could be used to detect algae bloom and SUVA can too
  • L1 at lower EM
  • Past Work: 0 – 30 mg C/L, No relationship to FI and SUVA
  • Add bars showing sum of microbial and terrestrial intensity for each water
  • Why microbial better correlated than terrestrial?
  • Fluorescence intensity provides more data than just SUVA and SUVA measurements can be blocked at certain wavelengths by certain species
  • Past Work: 0.5 – 7.5
  • Past Work: 1.15 – 1.75, Highest discrepancies for lowest TOC and SUVA, Applying inner filter correction to dilute samples introduces error to FI, Same FI trend on each instrument &amp; different across machines, FI lowest during wet season
  • Past work: 99% correlated
  • Compare to intensity graphs
  • New insights to MIEX treatment: Fluorescence spectra across natural, synthetic, and waste waters

    1. 1. New insights to MIEX treatment: Fluorescence spectra across synthetic, natural and waste waters<br />Pedro Palomino & Treavor H. Boyer<br />Department of Environmental Engineering Sciences<br />University of Florida Gainesville, FL<br />1<br />
    2. 2. Natural Organic Matter<br />Formation<br /><ul><li>Degradation of Terrestrial and Microbial matter
    3. 3. Large, complex and not fully understood</li></ul>Problems<br /><ul><li>Formation of Disinfection by-Products
    4. 4. Membrane fouling
    5. 5. Increased chemical requirements</li></ul>Natural Organic Matter<br />vanLoon and Duffy, Environmental Chemistry<br />Treatment options<br /><ul><li>Coagulation, Activated Carbon, Ion Exchange</li></ul>2<br />
    6. 6. Magnetic Ion Exchange Resin<br />3<br />NOM<br />-<br />Structure<br /><ul><li>Magnetic Iron Oxide aids in settling
    7. 7. Large surface area</li></ul>Process<br /><ul><li>Fluidized bed
    8. 8. Short mixing times
    9. 9. Regeneration</li></ul>Cl-<br />Cl-<br />Cl-<br />MIEX<br />+<br />+<br />+<br />+<br />+<br />+<br />+<br />+<br />+<br />Cl-<br />Cl-<br />+<br />+<br />+<br />+<br />+<br />+<br />Cl-<br />Cl-<br />+<br />+<br />+<br />+<br />+<br />+<br />+<br />+<br />Cl-<br />Cl-<br />NOM<br />-<br />Cl-<br />
    10. 10. MIEX Monitoring<br />4<br />Completely Mixed Flow Reactor<br />Current methods<br /><ul><li>DOC - Expensive and less reliable
    11. 11. UV - Simple and reliable, but small data set </li></ul>Raw<br />Treated <br />DOC<br />DOC<br />UV<br />UV<br />Could fluorescence be used as an alternative for both measurements? <br />
    12. 12. Goals and Objectives<br />5<br />Compare the impact of MIEX treatment on the fluorescence spectra across Surface, Ground, Synthetic & Waste waters? <br />Understand the shift in fluorescence peak location<br />Compare dissolved organic carbon (DOC) to fluorescence intensity <br />Compare specific ultraviolet absorbance (SUVA) to fluorescence index (FI)<br />
    13. 13. Sampling<br />6<br />2 surface waters <br /><ul><li>10 – 30 mg-C/L</li></ul>1 groundwater <br /><ul><li>5 – 6 mg-C/L</li></ul>4 synthetic waters <br /><ul><li>4 – 6 mg-C/L
    14. 14. Isolates of NOM</li></ul>5 leachates<br /><ul><li>300 – 1300 mg-C/L</li></ul>Savannah<br />St. Mary’s River<br />Putnam<br />Landfill<br />New River Landfill<br />Santa Fe River<br />St. Johns River<br />Alachua SW Landfill<br />Cedar Key Ground Water<br />Sanford Ave. Canal<br />Polk Landfill<br />Wikimapia.com<br />
    15. 15. Experiments<br />7<br />
    16. 16. Analysis<br />8<br />DOC and UV<br /><ul><li>SUVA = UV/DOC</li></ul>Fluorescence Spectrophotometer<br /><ul><li>Excitation: 220 - 500 nm
    17. 17. Emission: 220 - 600 nm </li></ul>MatLab<br /><ul><li>In-house Program: DI subtraction, normalize by raman & FI
    18. 18. FI = Intensity at EM470/EM520 @ EX370
    19. 19. No inner filter correction & cut out Rayleigh lines
    20. 20. Peak Shift: Location and Intensity </li></ul>Fluorescence Spectrophotometer<br />
    21. 21. Defining Peak Locations<br />9<br />500<br />Rayleigh <br />Line<br />390<br />350<br />Excitation (nm)<br />Terrestrial<br />Microbial<br />220<br />600<br />220<br />350<br />390<br />Emission (nm)<br />
    22. 22. Source Regions<br />10<br />Microbial<br />Terrestrial<br />FI = 1.6<br />FI = 2.1<br />IHSS Isolate of NOM from Suwannee River<br />Ichnetucknee Spring<br />
    23. 23. Peak Shift<br />11<br />Raw<br /><ul><li>Microbial: (345,225) & (345,280)
    24. 24. Terrestrial: (415,240) & (450,260) </li></ul>Treated<br /><ul><li>Shift to shorter emission wavelengths</li></ul>Conclusion<br /><ul><li>MIEX treatment changes the NOM chemistry</li></li></ul><li>Peak Shift - Raw<br />12<br />
    25. 25. Peak Shift - Treated<br />13<br />
    26. 26. NOM Concentration - Raw<br />14<br />DOC<br /><ul><li>Synthetic < Ground < Surface < Waste</li></ul>Intensity<br /><ul><li>Terrestrial peaks: Synthetic < Ground < Waste < Surface
    27. 27. Microbial peaks: Synthetic < Surface < Ground < Waste
    28. 28. Terrestrial peaks > Microbial peaks, except for Waste waters</li></ul>Intensity vs. DOC<br /><ul><li>Microbial intensity is better correlated to DOC</li></ul>Conclusions<br /><ul><li>Fluorescence intensity can be used as a surrogate measurement for DOC</li></li></ul><li>15<br />NOM Concentration - Raw<br />
    29. 29. 16<br />NOM Concentration - Raw<br />
    30. 30. NOM Concentration - Raw<br />17<br />
    31. 31. DOC Removal<br /><ul><li>Waste < Ground < Surface < Synthetic</li></ul>DOC<br /><ul><li>Synthetic < Ground < Surface < Waste</li></ul>Intensity<br /><ul><li>Location: Terrestrial peaks = Microbial peaks</li></ul>Intensity vs. DOC<br /><ul><li>Microbial peak intensity is better correlated to DOC </li></ul>Conclusion<br /><ul><li>MIEX treatment preferentially removes the terrestrial component of NOM</li></ul>18<br />NOM Concentration - Treated<br />
    32. 32. 19<br />NOM Concentration - Treated<br />
    33. 33. 20<br />NOM Concentration - Treated<br />
    34. 34. 21<br />NOM Concentration - Treated<br />
    35. 35. NOM Concentration - Treated<br />22<br />
    36. 36. Aromatic Carbon - Raw<br />23<br />SUVA<br /><ul><li>Waste < Ground < Surface < Synthetic</li></ul>Fluorescence Index<br /><ul><li>Synthetic < Surface < Ground < Waste</li></ul>Fluorescence Index vs. SUVA<br /><ul><li>FI and SUVA are strongly, negatively correlated</li></ul>Conclusion<br /><ul><li>Fluorescence Index can be used as a surrogate measurement for SUVA</li></li></ul><li>24<br />Aromatic Carbon - Raw<br />
    37. 37. 25<br />Aromatic Carbon- Raw<br />
    38. 38. Aromatic Carbon - Raw<br />26<br />
    39. 39. 27<br />Aromatic Carbon - Treated<br />SUVA<br /><ul><li>Treated < Raw</li></ul>Fluorescence Index<br /><ul><li>Raw > Treated</li></ul>Fluorescence Index vs. SUVA<br /><ul><li>Both raw and treated are strongly correlated</li></ul>Conclusion<br /><ul><li>Fluorescence Index can be used as a surrogate measurement for SUVA</li></li></ul><li>28<br />Aromatic Carbon - Treated<br />
    40. 40. 29<br />Aromatic Carbon - Treated<br />
    41. 41. Aromatic Carbon - Treated<br />30<br />
    42. 42. THMs (Take Home Messages)<br />31<br />Completely Mixed Flow Reactor<br />Peak Shift<br /><ul><li>Provides more detail into NOM chemistry than SUVA or FI</li></ul>NOM<br /><ul><li>Peak intensity and DOC are positively correlated</li></ul>Aromatic Carbon<br /><ul><li>SUVA and FI are inversely related</li></ul>Raw<br />Treated <br />DOC<br />DOC<br />UV<br />UV<br />Fluorescence<br />Fluorescence<br />Fluorescence measurements could be a better alternative for monitoring MIEX treatment<br />
    43. 43. Thank You<br />32<br />Acknowledgments<br /><ul><li>Stephanie Ishii
    44. 44. Katie Indarawis
    45. 45. Chris Rokicki
    46. 46. Jennifer Apell
    47. 47. Krystal Walker
    48. 48. Sarah Comstock
    49. 49. Katherine Graf
    50. 50. Troy Chasteen
    51. 51. Paul Stevenson
    52. 52. Treavor Boyer</li></ul>Contact<br /><ul><li>palomino.pa @gmail.com</li>

    ×