Concepts & methods from complex systems studies that can help inform NRM   <ul><ul><li>Dr. Lael Parrott Director, Complex ...
How do we deal with complexity in the design, management & restoration of ecosystems and landscapes? Ecosystems and landsc...
APPLICATIONS ecosystem & landscape design, management & restoration environmental indicators THEORY ecological complexity ...
<ul><li>What is a complex system? </li></ul><ul><li>Complexity: Implications & challenges for natural resource management ...
Complex Systems
What is a complex system? “ The whole is more than the sum of the parts.” A system composed of multiple interacting elemen...
What is a complex system?
What is a complex system? Locally interacting entities Emergent structures & processes Feedback What is a complex system?
Complex Systems Key characteristics <ul><li>Hierarchy and scaling </li></ul><ul><li>Emergence </li></ul><ul><li>Self-organ...
<ul><li>Accepting complexity means accepting that ecosystems and landscapes are…  </li></ul><ul><li>Dynamic and subject to...
<ul><li>Integrating concepts from complex systems research into management paradigms  </li></ul><ul><li>(e.g., acceptance ...
Modelling  Ecological Complexity
<ul><li>Use a « bottom-up » approach: Model local interactions and let the higher level dynamics emerge </li></ul><ul><ul>...
Example:  Modelling ecological resilience
Model: WIST   (Weather-driven, Individual-based, Spatially-explicit, Terrestrial ecosystem model) <ul><li>Fully configurab...
<ul><li>In WIST: </li></ul><ul><ul><li>Animal individuals:  respire; search for food; eat; move about; reproduce… </li></u...
<ul><li>WIST   is a   virtual ecosystem   in which... </li></ul><ul><ul><li>Processes and interactions are deterministic a...
<ul><li>Initial conditions: </li></ul><ul><ul><li>500m x 500m surface </li></ul></ul><ul><ul><li>50 species of annual & pe...
Ecosystem biomass:  spatiotemporal dynamics
Case 2:   Relationship between grazing intensity and spatiotemporal complexity in a model ecosystem  <ul><li>Initial condi...
Modelling ecological resilience Measuring spatiotemporal complexity Dataset: biomass recorded monthly for 10mx10m grid cells
Modelling ecological resilience (Parrott, 2005,  Ecological Complexity;  Parrott et al., 2008,  Ecological Informatics . )...
Results over many simulations: Grazing intensity (# of herbivores) Grazing duration (years) Spatiotemporal complexity of v...
Example:  Understanding community assembly through modelling
Understanding community assembly Species Interaction
Understanding community assembly <ul><li>Spatial version of the individual-based « Tangled Nature » model of multi-species...
Understanding community assembly dispersal Regional species pool (2 20  species; random interaction web) random species in...
Understanding community assembly Spatial patterns of community similarity (Filotas et al.,  in revision )
Understanding community assembly low dispersal regional species pool high dispersal Dispersal rate Dispersal rate Fraction...
Understanding community assembly Dispersal rate <ul><li>In this model... </li></ul><ul><ul><li>community and landscape lev...
Understanding community assembly Using modelling to find optimal community assembly sequences  (Côté & Parrott, 2005; Côté...
Understanding community assembly
Understanding community assembly <ul><ul><ul><li>Using multi-criteria optimisation methods & genetic algorithms, we can fi...
Conclusions
<ul><ul><li>Embracing complexity requires new tools for natural resource management; </li></ul></ul><ul><ul><ul><li>models...
<ul><ul><li>Modelling of human and ecological components of landscapes for decision support in the Boreal Forest & the Sai...
Acknowledgements Natural Sciences and Engineering Research Council of Canada Les Fonds Québécois sur la Recherche en Natur...
Concepts & methods from complex systems studies that can help inform NRM   <ul><ul><li>Dr. Lael Parrott Director, Complex ...
Upcoming SlideShare
Loading in …5
×

Dr Lael Parrott at the Landscape Science Cluster Seminar, May 2009

1,033 views

Published on

Dr Lael Parrott on Concepts & methods from complex systems studies that can help inform NRM at the Landscape Science Cluster Seminar, May 2009

  • Be the first to comment

  • Be the first to like this

Dr Lael Parrott at the Landscape Science Cluster Seminar, May 2009

  1. 1. Concepts & methods from complex systems studies that can help inform NRM <ul><ul><li>Dr. Lael Parrott Director, Complex Systems Laboratory Géographie, Université de Montréal, Canada </li></ul></ul><ul><ul><li>[email_address] </li></ul></ul><ul><li>http:// www.geog.umontreal.ca/syscomplex </li></ul>Presented to the Landscape Science Cluster, University of Adelaide, 28 May 2009.
  2. 2. How do we deal with complexity in the design, management & restoration of ecosystems and landscapes? Ecosystems and landscapes are complex systems
  3. 3. APPLICATIONS ecosystem & landscape design, management & restoration environmental indicators THEORY ecological complexity METHODS ecological informatics (models, analysis, data management & visualisation) Complex Systems Laboratory Research Program
  4. 4. <ul><li>What is a complex system? </li></ul><ul><li>Complexity: Implications & challenges for natural resource management </li></ul><ul><li>Modelling ecological complexity </li></ul><ul><ul><li>Examples : Modelling ecological resilience; Understanding community assembly </li></ul></ul><ul><li>Conclusion </li></ul>Outline
  5. 5. Complex Systems
  6. 6. What is a complex system? “ The whole is more than the sum of the parts.” A system composed of multiple interacting elements having a comportment that is difficult to analyse or describe using only one scale or resolution. (Parrott, 2002. Trans. of the ASAE .)
  7. 7. What is a complex system?
  8. 8. What is a complex system? Locally interacting entities Emergent structures & processes Feedback What is a complex system?
  9. 9. Complex Systems Key characteristics <ul><li>Hierarchy and scaling </li></ul><ul><li>Emergence </li></ul><ul><li>Self-organisation </li></ul><ul><li>Uncertainty </li></ul><ul><li>Memory </li></ul><ul><li>Adaptation </li></ul>
  10. 10. <ul><li>Accepting complexity means accepting that ecosystems and landscapes are… </li></ul><ul><li>Dynamic and subject to rapid change; </li></ul><ul><li>Infused with memory of past events; </li></ul><ul><li>Self-organised in space and time. </li></ul>(Parrott & Li, 2005, Ecological Society of America Evening Session on Ecological Complexity ) Complexity Implications for natural resource management
  11. 11. <ul><li>Integrating concepts from complex systems research into management paradigms </li></ul><ul><li>(e.g., acceptance of multiple stable states; harnessing self-organisation; dealing with uncertainty) </li></ul><ul><li>Determining how to treat multi-scale interactions </li></ul><ul><li>Development of new methods to monitor and describe complex structures and dynamics </li></ul>Complexity Challenges for natural resource management
  12. 12. Modelling Ecological Complexity
  13. 13. <ul><li>Use a « bottom-up » approach: Model local interactions and let the higher level dynamics emerge </li></ul><ul><ul><li>Individual- and agent-based models </li></ul></ul><ul><li>Importance of space </li></ul>Modelling ecological complexity Considerations
  14. 14. Example: Modelling ecological resilience
  15. 15. Model: WIST (Weather-driven, Individual-based, Spatially-explicit, Terrestrial ecosystem model) <ul><li>Fully configurable, multi-species, multi-trophic individual-based model </li></ul><ul><li>Includes environment (soil, atmospheric conditions), topography & weather </li></ul><ul><li>Landscape is modelled as a grid </li></ul><ul><li>MPI version available for parallel processing infrastructures </li></ul>(Parrott & Kok 2001, 2002 in Ecological Modelling ) Modelling ecological resilience
  16. 16. <ul><li>In WIST: </li></ul><ul><ul><li>Animal individuals: respire; search for food; eat; move about; reproduce… </li></ul></ul><ul><ul><li>Plant individuals: grow; photosynthesize; disperse seeds… </li></ul></ul>Modelling ecological resilience
  17. 17. <ul><li>WIST is a virtual ecosystem in which... </li></ul><ul><ul><li>Processes and interactions are deterministic and rule-based </li></ul></ul><ul><ul><li>Complex, spatiotemporal dynamics emerge at the landscape level </li></ul></ul>Modelling ecological resilience
  18. 18. <ul><li>Initial conditions: </li></ul><ul><ul><li>500m x 500m surface </li></ul></ul><ul><ul><li>50 species of annual & perennial grasses and herbs </li></ul></ul><ul><ul><li>3 herbivore species </li></ul></ul><ul><li>Simulations for 100 years at 10 minute time steps </li></ul><ul><li>Introduce « clear-cuts » randomly over the landscape </li></ul>(Parrott, 2004, Ecological Complexity) Case 1: Study of the resilience of a grassland ecosystem subject to frequent disturbance Modelling ecological resilience
  19. 19. Ecosystem biomass: spatiotemporal dynamics
  20. 20. Case 2: Relationship between grazing intensity and spatiotemporal complexity in a model ecosystem <ul><li>Initial conditions: </li></ul><ul><ul><li>30 species of annual & perennial grasses and herbs </li></ul></ul><ul><li>Introduce herbivores (“rabbits”) </li></ul><ul><li>Vary grazing intensity (# of herbivores and duration) </li></ul><ul><li>50-year simulations </li></ul>(Parrott, 2004, ESA Annual Meeting) Modelling ecological resilience
  21. 21. Modelling ecological resilience Measuring spatiotemporal complexity Dataset: biomass recorded monthly for 10mx10m grid cells
  22. 22. Modelling ecological resilience (Parrott, 2005, Ecological Complexity; Parrott et al., 2008, Ecological Informatics . ) Measuring spatiotemporal complexity
  23. 23. Results over many simulations: Grazing intensity (# of herbivores) Grazing duration (years) Spatiotemporal complexity of vegetation biomass (Parrott, 2004, ESA Annual Meeting) Modelling ecological resilience
  24. 24. Example: Understanding community assembly through modelling
  25. 25. Understanding community assembly Species Interaction
  26. 26. Understanding community assembly <ul><li>Spatial version of the individual-based « Tangled Nature » model of multi-species community dynamics Doctoral project of Élise Filotas; Collaborators: Martin Grant, Physics, McGill University & Per Rikvold, Physics, Florida State University. </li></ul>Separate communities linked via dispersal (Filotas et al., Ecological Complexity , 2008)
  27. 27. Understanding community assembly dispersal Regional species pool (2 20 species; random interaction web) random species introductions Landscape of locally connected communities (typical grid size: 128 x 128 cells) Species in potentia Local community ( n interacting species)
  28. 28. Understanding community assembly Spatial patterns of community similarity (Filotas et al., in revision )
  29. 29. Understanding community assembly low dispersal regional species pool high dispersal Dispersal rate Dispersal rate Fraction of interacting pairs Structure of the interaction webs (Filotas et al., in revision )
  30. 30. Understanding community assembly Dispersal rate <ul><li>In this model... </li></ul><ul><ul><li>community and landscape level properties emerge from local level inter-species interactions. </li></ul></ul><ul><li>We demonstrate... </li></ul><ul><ul><li>the important role of biotic interactions in structuring communities and the emergence of mutualist-dominated interaction webs in low-dispersal landscapes; </li></ul></ul><ul><ul><li>the role of facilitation as a building block for more biologically diverse communities. </li></ul></ul>
  31. 31. Understanding community assembly Using modelling to find optimal community assembly sequences (Côté & Parrott, 2005; Côté, Parrott & Sabourin, 2007)
  32. 32. Understanding community assembly
  33. 33. Understanding community assembly <ul><ul><ul><li>Using multi-criteria optimisation methods & genetic algorithms, we can find assembly sequences that maximize diversity & productivity while respecting constraints on food web properties such as connectance. (Côté & Parrott, 2005; Côté, Parrott & Sabourin, 2007) </li></ul></ul></ul><ul><ul><ul><li>Important implications for ecosystem design & restoration projects. </li></ul></ul></ul>
  34. 34. Conclusions
  35. 35. <ul><ul><li>Embracing complexity requires new tools for natural resource management; </li></ul></ul><ul><ul><ul><li>models, monitoring programmes </li></ul></ul></ul><ul><ul><li>New modelling methods suited for studying complex ecological interactions across multiple scales are being developed; </li></ul></ul><ul><ul><ul><li>can simulate emergent properties in space and time </li></ul></ul></ul><ul><ul><li>Managing future landscapes and ecosystems as complex, coupled social-ecological systems will require multidisciplinary teams, combining approaches from the natural, applied and human sciences. </li></ul></ul>Conclusions
  36. 36. <ul><ul><li>Modelling of human and ecological components of landscapes for decision support in the Boreal Forest & the Saint Lawrence River estuary. - Come to the Place & Purpose symposium to learn more! </li></ul></ul><ul><ul><li>Future Landscapes: Managing within complexity by L. Parrott and W. Meyer, manuscript in preparation. </li></ul></ul>Work in progress...
  37. 37. Acknowledgements Natural Sciences and Engineering Research Council of Canada Les Fonds Québécois sur la Recherche en Nature et Technologies Canadian Foundation for Innovation Québec Supercomputing Network ALL of the students in the Complex Systems Laboratory, past & present.
  38. 38. Concepts & methods from complex systems studies that can help inform NRM <ul><ul><li>Dr. Lael Parrott Director, Complex Systems Laboratory Géographie, Université de Montréal, Canada </li></ul></ul><ul><ul><li>[email_address] </li></ul></ul><ul><li>http:// www.geog.umontreal.ca/syscomplex </li></ul>Presented to the Landscape Science Cluster, University of Adelaide, 28 May 2009.

×