Introduction to HSW


Published on

Published in: Education, Technology
  • Be the first to comment

  • Be the first to like this

Introduction to HSW

  1. 1. GCSE Triple Science How Science Works Mr. Iacovos Pilinas American Academy Larnaca
  2. 2. Targets: <ul><li>Dependent, Independent and control variables. </li></ul><ul><li>Repeated measurements </li></ul><ul><li>Valid data </li></ul><ul><li>Reliable data </li></ul><ul><li>Outlier data </li></ul><ul><li>Line of best fit </li></ul><ul><li>Scatter plot </li></ul><ul><li>Line of best fit </li></ul><ul><li>Gradient </li></ul>
  3. 3. Answer the question to find: <ul><li>Independent variable: What do I change? </li></ul><ul><li>Dependent variable: What do I observe? </li></ul><ul><li>Control variable: What do I keep the same? </li></ul>
  4. 4. Try it out! <ul><li>Measure the width of your bench! </li></ul><ul><li>Groups of two </li></ul><ul><li>3 min </li></ul>
  5. 5. Repeated measures <ul><li>For every measurement you take: </li></ul><ul><li>- Repeat it for at least two times </li></ul><ul><li>- Find the average </li></ul><ul><li>- Record the average value for your measurement </li></ul>
  6. 6. Valid data <ul><li>In a valid experiment all variables are kept constant apart from those being investigated </li></ul><ul><li>All systematic errors (=incorrectly calibrated instruments) have been eliminated </li></ul><ul><li>Random errors (=human misjudgment; limitations in the equipment) are reduced. </li></ul>
  7. 7. Reliable <ul><li>Reliability refers to repeatability or consistency of results. </li></ul><ul><li> So always take repeated measurements! </li></ul>
  8. 8. Outlier data <ul><li>Observations that lie “far” away from other values </li></ul><ul><li>It is up to the analyst to decide what will be considered “far”. </li></ul>
  9. 9. Scatter plot <ul><li>A graph that relates the data between two variables: </li></ul>
  10. 10. Line of best fit <ul><li>A line ( straight or curve ) on a scatter plot which can be drawn near the points to more clearly show the relation between two variables </li></ul>
  11. 11. Gradient of a graph <ul><li>Give two examples using the relation V=IR </li></ul>