3 Basic Electronics 3

4,968 views

Published on

basic electronics

Published in: Design
1 Comment
4 Likes
Statistics
Notes
  • Firefighters work closely with the local community to increase their level of fire safety awareness in order to help prevent fires and accidents occurring in the first place. They promote fire safety and enforce fire safety standards in public and commercial premises by acting and advising on all matters relating to the protection of life and property from fire and other risks.For more information please visit http://www.safedesign.com
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
No Downloads
Views
Total views
4,968
On SlideShare
0
From Embeds
0
Number of Embeds
1,654
Actions
Shares
0
Downloads
182
Comments
1
Likes
4
Embeds 0
No embeds

No notes for slide

3 Basic Electronics 3

  1. 1. Basic electronics Optical interfaces: Detect and control
  2. 2. Ohm’s law <ul><li>Current = voltage / resistance </li></ul><ul><li>I = V / R </li></ul><ul><li>V = I x R </li></ul><ul><li>Definitions </li></ul><ul><li>Voltage = potential energy / unit charge, units = Volts </li></ul><ul><li>Current = charge flow rate, units = Amps </li></ul><ul><li>Resistance = friction, units = Ohms </li></ul><ul><li>Example </li></ul><ul><li>Voltage drop when current flows through resistor </li></ul><ul><li>V 1 - V 2 = I R </li></ul>I R V 1 V 2
  3. 3. Schematics <ul><li>Symbols represent circuit elements </li></ul><ul><li>Lines are wires </li></ul>Battery Resistor Ground V R I Sample circuit Ground voltage defined = 0 + +
  4. 4. Parallel and series resistors <ul><li>Series </li></ul><ul><li>same current flows through all </li></ul><ul><li>Parallel </li></ul><ul><li>save voltage across all </li></ul>Series circuit V = R 1 I + R 2 I = R eff I R eff = R 1 + R 2 Parallel circuit I = V/R 1 + V/R 2 = V/R eff 1/R eff = 1/R 1 + 1/R 2 + Note: these points are connected together I V R 1 R 2 + V R 1 R 2 I 1 I 2 I
  5. 5. Resistive voltage divider <ul><li>Series resistor circuit </li></ul><ul><li>Reduce input voltage to desired level </li></ul><ul><li>Advantages: </li></ul><ul><ul><li>simple and accurate </li></ul></ul><ul><ul><li>complex circuit can use single voltage source </li></ul></ul><ul><li>Disadvantage: </li></ul><ul><ul><li>dissipates power </li></ul></ul><ul><ul><li>easy to overload </li></ul></ul><ul><ul><li>need R load << R 2 </li></ul></ul>New schematic symbol: external connection Resistive divider I = V in /R eff = V out /R 2 V out = V in (R 2 / (R 1 + R 2 ) ) + V in R 1 R 2 I I V out
  6. 6. Variable voltage divider <ul><li>Use potentiometer (= variable resistor) </li></ul><ul><li>Most common: constant output resistance </li></ul>V in R var R out I I V out Variable voltage divider V out = V in (R out / (R var + R out ) ) New schematic symbol: potentiometer +
  7. 7. Capacitors <ul><li>Charge = voltage x capacitance </li></ul><ul><li>Q = C V </li></ul><ul><li>Definitions </li></ul><ul><li>Charge = integrated current flow , units = Coloumbs = Amp - seconds </li></ul><ul><li>I = dQ/dt </li></ul><ul><li>Capacitance = storage capacity, units = Farads </li></ul><ul><li>Example </li></ul><ul><li>Capacitor charging circuit </li></ul><ul><li>Time constant = RC =  </li></ul>Capacitor charging circuit V = V R + V C = R dQ/dt + Q/C dQ/dt + Q/RC = V/R Q = C V (1 - exp(-t/RC)) V out = V in (1 - exp(-t/RC)) New schematic symbol: capacitor + V R C I V out Q V out t V in  = RC Capacitor charging curve time constant = RC
  8. 8. AC circuits <ul><li>Replace battery with sine (cosine) wave source </li></ul><ul><li>V = V 0 cos(2  f t) </li></ul><ul><li>Definitions </li></ul><ul><li>Frequency f = cosine wave frequency, units = Hertz </li></ul><ul><li>Examples </li></ul><ul><li>Resistor response: I = (V 0 /R) cos(2  f t) </li></ul><ul><li>Capacitor response: Q = CV 0 cos(2  f t) </li></ul><ul><ul><li>I = - 2  f CV 0 sin(2  f t) </li></ul></ul><ul><ul><li>Current depends on frequency </li></ul></ul><ul><ul><li>negative sine wave replaces cosine wave </li></ul></ul><ul><ul><li>- 90 degree phase shift = lag </li></ul></ul>V 0 cos(2  f t) C I = - 2  f CV 0 sin(2  f t) <ul><li>Capacitive ac circuit </li></ul><ul><li>90 degree phase lag </li></ul>V 0 cos(2  f t) R I = (V 0 /R) cos(2  f t) Resistive ac circuit New schematic symbol: AC voltage source
  9. 9. Simplified notation: ac-circuits <ul><li>V = V 0 cos(2  f t) = V 0 [exp(2  j f t) + c.c.]/2 </li></ul><ul><li>Drop c.c. part and factor of 1/2 </li></ul><ul><li>V = V 0 exp(2  j f t) </li></ul><ul><li>Revisit resistive and capacitive circuits </li></ul><ul><li>Resistor response: I = (V 0 /R) exp(2  j f t) = V / R = V/ Z R </li></ul><ul><li>Capacitor response: I = 2  j f CV 0 exp(2  j f t) = (2  j f C) V = V/ Z C </li></ul><ul><li>Definition: Impedance, Z = effective resistance, units Ohms </li></ul><ul><li>Capacitor impedance Z C = 1 / (2  j  f C) </li></ul><ul><li>Resistor impedance Z R = R </li></ul><ul><li>Impedance makes it look like Ohms law applies to capacitive circuits also </li></ul><ul><li>Capacitor response I = V / Z C </li></ul>
  10. 10. Explore capacitor circuits <ul><li>Impedance Z C = 1/ (2  j  f C) </li></ul><ul><li>Limit of low frequency f ~ 0 </li></ul><ul><ul><li>Z C --> infinity </li></ul></ul><ul><ul><li>Capacitor is open circuit at low frequency </li></ul></ul><ul><li>Limit of low frequency f ~ infinity </li></ul><ul><ul><li>Z C --> 0 </li></ul></ul><ul><ul><li>Capacitor is short circuit at low frequency </li></ul></ul>V 0 cos(2  f t) C I = V/Z C Capacitive ac circuit
  11. 11. Revisit capacitor charging circuit <ul><li>Replace C with impedance Z C </li></ul><ul><li>Charging circuit looks like voltage divider </li></ul><ul><li>V out = V in (Z C / (Z R + Z C ) ) = V in / (1 + 2  j  f R C ) </li></ul><ul><li>Low-pass filter </li></ul><ul><li>Crossover when f = 1 / 2  R C = 1 / 2   ,  is time constant </li></ul><ul><li>lower frequencies V out ~ V in = pass band </li></ul><ul><li>higher frequencies V out ~ V in / (2  j  f R C ) = attenuated </li></ul>log(V out ) log(  f ) logV in f = 1 / 2  <ul><li>Low-pass filter response </li></ul><ul><li>time constant = RC =  </li></ul>Single-pole rolloff 6 dB/octave = 10 dB/decade knee Capacitor charging circuit = Low-pass filter V in = V 0 cos(2  f t) R C I V out I
  12. 12. Inductors <ul><li>Voltage = rate of voltage change x inductance </li></ul><ul><li>V = L dI/dt </li></ul><ul><li>Definitions </li></ul><ul><li>Inductance L = resistance to current change, units = Henrys </li></ul><ul><li>Impedance of inductor: Z L = (2  j  f L) </li></ul><ul><li>Low frequency = short circuit </li></ul><ul><li>High frequency = open circuit </li></ul><ul><li>Inductors rarely used </li></ul>Capacitor charging circuit = Low-pass filter V out log(V out ) log(  f ) logV in f = R / 2  j  L High-pass filter response V in = V 0 cos(2  f t) R L I I New schematic symbol: Inductor
  13. 13. Capacitor filters circuits <ul><li>Can make both low and high pass filters </li></ul>0 degrees 0 degrees Low-pass filter V in = V 0 cos(2  f t) R C I V out I High-pass filter V in = V 0 cos(2  f t) C R I V out I log(V out ) log(  f ) logV in f = 1 / 2  Gain response log(V out ) log(  f ) logV in f = 1 / 2  Gain response knee phase log(  f ) f = 1 / 2  Phase response -90 degrees phase log(  f ) f = 1 / 2  Phase response -90 degrees
  14. 14. Summary of schematic symbols + Battery Resistor Ground External connection Capacitor AC voltage source Inductor Non-connecting wires - + Op amp Potentiometer Potentiometer 2-inputs plus center tap Diode
  15. 15. Color code <ul><li>Resistor values determined by color </li></ul><ul><li>Three main bands </li></ul><ul><ul><li>1st = 1st digit </li></ul></ul><ul><ul><li>2nd = 2nd digit </li></ul></ul><ul><ul><li>3rd = # of trailing zeros </li></ul></ul><ul><li>Examples </li></ul><ul><ul><li>red, brown, black </li></ul></ul><ul><ul><li>2 1 no zeros = 21 Ohms </li></ul></ul><ul><ul><li>yellow, brown, green </li></ul></ul><ul><ul><li>4 1 5 = 4.1 Mohm </li></ul></ul><ul><ul><li>purple, gray, orange </li></ul></ul><ul><ul><li>7 8 3 = 78 kOhms </li></ul></ul><ul><li>Capacitors can have 3 numbers </li></ul><ul><ul><li>use like three colors </li></ul></ul>Color black brown red orange yellow green blue violet gray white Number 0 1 2 3 4 5 6 7 8 9

×