SlideShare a Scribd company logo

Tiny Batches, in the wine: Shiny New Bits in Spark Streaming

London Spark Meetup 2014-11-11 @Skimlinks http://www.meetup.com/Spark-London/events/217362972/ To paraphrase the immortal crooner Don Ho: "Tiny Batches, in the wine, make me happy, make me feel fine." http://youtu.be/mlCiDEXuxxA Apache Spark provides support for streaming use cases, such as real-time analytics on log files, by leveraging a model called discretized streams (D-Streams). These "micro batch" computations operated on small time intervals, generally from 500 milliseconds up. One major innovation of Spark Streaming is that it leverages a unified engine. In other words, the same business logic can be used across multiple uses cases: streaming, but also interactive, iterative, machine learning, etc. This talk will compare case studies for production deployments of Spark Streaming, emerging design patterns for integration with popular complementary OSS frameworks, plus some of the more advanced features such as approximation algorithms, and take a look at what's ahead — including the new Python support for Spark Streaming that will be in the upcoming 1.2 release. Also, let's chat a bit about the new Databricks + O'Reilly developer certification for Apache Spark…

1 of 76
Download to read offline
Tiny Batches, in the wine: 
Shiny New Bits in Spark Streaming 
London Spark Meetup 
2014-11-11 
meetup.com/Spark-London/events/217362972/ 
Paco Nathan 
@pacoid 
1
BTW, in case anyone didn’t get the pun… 
http://youtu.be/mlCiDEXuxxA 
2
Spark, 
the elevator pitch 
3
Spark, the elevator pitch 
Developed in 2009 at UC Berkeley AMPLab, 
open sourced in 2010, Spark has since become 
one of the largest OSS communities in big data, 
with over 200 contributors in 50+ organizations 
spark.apache.org 
“Organizations that are looking at big data challenges – 
including collection, ETL, storage, exploration and analytics – 
should consider Spark for its in-memory performance and 
the breadth of its model. 
It supports advanced analytics solutions on Hadoop 
clusters, including the iterative model required for 
machine learning and graph analysis.” 
Gartner, Advanced Analytics and Data Science (2014) 
4
Spark, the elevator pitch 
5
Spark, the elevator pitch 
Spark Core is the general execution engine for the 
Spark platform that other functionality is built atop: 
! 
• in-memory computing capabilities deliver speed 
• general execution model supports wide variety 
of use cases 
• ease of development – native APIs in Java, Scala, 
Python (+ SQL, Clojure, R) 
6
Ad

Recommended

QCon São Paulo: Real-Time Analytics with Spark Streaming
QCon São Paulo: Real-Time Analytics with Spark StreamingQCon São Paulo: Real-Time Analytics with Spark Streaming
QCon São Paulo: Real-Time Analytics with Spark StreamingPaco Nathan
 
Strata EU 2014: Spark Streaming Case Studies
Strata EU 2014: Spark Streaming Case StudiesStrata EU 2014: Spark Streaming Case Studies
Strata EU 2014: Spark Streaming Case StudiesPaco Nathan
 
Strata 2015 Data Preview: Spark, Data Visualization, YARN, and More
Strata 2015 Data Preview: Spark, Data Visualization, YARN, and MoreStrata 2015 Data Preview: Spark, Data Visualization, YARN, and More
Strata 2015 Data Preview: Spark, Data Visualization, YARN, and MorePaco Nathan
 
Introduction to Spark Training
Introduction to Spark TrainingIntroduction to Spark Training
Introduction to Spark TrainingSpark Summit
 
Apache Spark and the Emerging Technology Landscape for Big Data
Apache Spark and the Emerging Technology Landscape for Big DataApache Spark and the Emerging Technology Landscape for Big Data
Apache Spark and the Emerging Technology Landscape for Big DataPaco Nathan
 
Microservices, Containers, and Machine Learning
Microservices, Containers, and Machine LearningMicroservices, Containers, and Machine Learning
Microservices, Containers, and Machine LearningPaco Nathan
 
Data Science with Spark
Data Science with SparkData Science with Spark
Data Science with SparkKrishna Sankar
 

More Related Content

What's hot

Databricks Meetup @ Los Angeles Apache Spark User Group
Databricks Meetup @ Los Angeles Apache Spark User GroupDatabricks Meetup @ Los Angeles Apache Spark User Group
Databricks Meetup @ Los Angeles Apache Spark User GroupPaco Nathan
 
Microservices, containers, and machine learning
Microservices, containers, and machine learningMicroservices, containers, and machine learning
Microservices, containers, and machine learningPaco Nathan
 
Spark at NASA/JPL-(Chris Mattmann, NASA/JPL)
Spark at NASA/JPL-(Chris Mattmann, NASA/JPL)Spark at NASA/JPL-(Chris Mattmann, NASA/JPL)
Spark at NASA/JPL-(Chris Mattmann, NASA/JPL)Spark Summit
 
Transitioning Compute Models: Hadoop MapReduce to Spark
Transitioning Compute Models: Hadoop MapReduce to SparkTransitioning Compute Models: Hadoop MapReduce to Spark
Transitioning Compute Models: Hadoop MapReduce to SparkSlim Baltagi
 
How Apache Spark fits into the Big Data landscape
How Apache Spark fits into the Big Data landscapeHow Apache Spark fits into the Big Data landscape
How Apache Spark fits into the Big Data landscapePaco Nathan
 
Machine learning at scale challenges and solutions
Machine learning at scale challenges and solutionsMachine learning at scale challenges and solutions
Machine learning at scale challenges and solutionsStavros Kontopoulos
 
Scaling Up AI Research to Production with PyTorch and MLFlow
Scaling Up AI Research to Production with PyTorch and MLFlowScaling Up AI Research to Production with PyTorch and MLFlow
Scaling Up AI Research to Production with PyTorch and MLFlowDatabricks
 
Paris Data Geek - Spark Streaming
Paris Data Geek - Spark Streaming Paris Data Geek - Spark Streaming
Paris Data Geek - Spark Streaming Djamel Zouaoui
 
From Pandas to Koalas: Reducing Time-To-Insight for Virgin Hyperloop's Data
From Pandas to Koalas: Reducing Time-To-Insight for Virgin Hyperloop's DataFrom Pandas to Koalas: Reducing Time-To-Insight for Virgin Hyperloop's Data
From Pandas to Koalas: Reducing Time-To-Insight for Virgin Hyperloop's DataDatabricks
 
Introduction To Big Data with Hadoop and Spark - For Batch and Real Time Proc...
Introduction To Big Data with Hadoop and Spark - For Batch and Real Time Proc...Introduction To Big Data with Hadoop and Spark - For Batch and Real Time Proc...
Introduction To Big Data with Hadoop and Spark - For Batch and Real Time Proc...Agile Testing Alliance
 
Jump Start on Apache® Spark™ 2.x with Databricks
Jump Start on Apache® Spark™ 2.x with Databricks Jump Start on Apache® Spark™ 2.x with Databricks
Jump Start on Apache® Spark™ 2.x with Databricks Databricks
 
Intro to Spark development
 Intro to Spark development  Intro to Spark development
Intro to Spark development Spark Summit
 
Data Science at Scale by Sarah Guido
Data Science at Scale by Sarah GuidoData Science at Scale by Sarah Guido
Data Science at Scale by Sarah GuidoSpark Summit
 
Fast Data Analytics with Spark and Python
Fast Data Analytics with Spark and PythonFast Data Analytics with Spark and Python
Fast Data Analytics with Spark and PythonBenjamin Bengfort
 
Spark Summit EU talk by Christos Erotocritou
Spark Summit EU talk by Christos ErotocritouSpark Summit EU talk by Christos Erotocritou
Spark Summit EU talk by Christos ErotocritouSpark Summit
 
Graph Analytics in Spark
Graph Analytics in SparkGraph Analytics in Spark
Graph Analytics in SparkPaco Nathan
 
Implementing the Lambda Architecture efficiently with Apache Spark
Implementing the Lambda Architecture efficiently with Apache SparkImplementing the Lambda Architecture efficiently with Apache Spark
Implementing the Lambda Architecture efficiently with Apache SparkDataWorks Summit
 
Native Support of Prometheus Monitoring in Apache Spark 3.0
Native Support of Prometheus Monitoring in Apache Spark 3.0Native Support of Prometheus Monitoring in Apache Spark 3.0
Native Support of Prometheus Monitoring in Apache Spark 3.0Databricks
 
Spark and Cassandra: An Amazing Apache Love Story by Patrick McFadin
Spark and Cassandra: An Amazing Apache Love Story by Patrick McFadinSpark and Cassandra: An Amazing Apache Love Story by Patrick McFadin
Spark and Cassandra: An Amazing Apache Love Story by Patrick McFadinSpark Summit
 

What's hot (20)

Databricks Meetup @ Los Angeles Apache Spark User Group
Databricks Meetup @ Los Angeles Apache Spark User GroupDatabricks Meetup @ Los Angeles Apache Spark User Group
Databricks Meetup @ Los Angeles Apache Spark User Group
 
Microservices, containers, and machine learning
Microservices, containers, and machine learningMicroservices, containers, and machine learning
Microservices, containers, and machine learning
 
Spark at NASA/JPL-(Chris Mattmann, NASA/JPL)
Spark at NASA/JPL-(Chris Mattmann, NASA/JPL)Spark at NASA/JPL-(Chris Mattmann, NASA/JPL)
Spark at NASA/JPL-(Chris Mattmann, NASA/JPL)
 
Transitioning Compute Models: Hadoop MapReduce to Spark
Transitioning Compute Models: Hadoop MapReduce to SparkTransitioning Compute Models: Hadoop MapReduce to Spark
Transitioning Compute Models: Hadoop MapReduce to Spark
 
How Apache Spark fits into the Big Data landscape
How Apache Spark fits into the Big Data landscapeHow Apache Spark fits into the Big Data landscape
How Apache Spark fits into the Big Data landscape
 
Machine learning at scale challenges and solutions
Machine learning at scale challenges and solutionsMachine learning at scale challenges and solutions
Machine learning at scale challenges and solutions
 
Scaling Up AI Research to Production with PyTorch and MLFlow
Scaling Up AI Research to Production with PyTorch and MLFlowScaling Up AI Research to Production with PyTorch and MLFlow
Scaling Up AI Research to Production with PyTorch and MLFlow
 
Hadoop to spark_v2
Hadoop to spark_v2Hadoop to spark_v2
Hadoop to spark_v2
 
Paris Data Geek - Spark Streaming
Paris Data Geek - Spark Streaming Paris Data Geek - Spark Streaming
Paris Data Geek - Spark Streaming
 
From Pandas to Koalas: Reducing Time-To-Insight for Virgin Hyperloop's Data
From Pandas to Koalas: Reducing Time-To-Insight for Virgin Hyperloop's DataFrom Pandas to Koalas: Reducing Time-To-Insight for Virgin Hyperloop's Data
From Pandas to Koalas: Reducing Time-To-Insight for Virgin Hyperloop's Data
 
Introduction To Big Data with Hadoop and Spark - For Batch and Real Time Proc...
Introduction To Big Data with Hadoop and Spark - For Batch and Real Time Proc...Introduction To Big Data with Hadoop and Spark - For Batch and Real Time Proc...
Introduction To Big Data with Hadoop and Spark - For Batch and Real Time Proc...
 
Jump Start on Apache® Spark™ 2.x with Databricks
Jump Start on Apache® Spark™ 2.x with Databricks Jump Start on Apache® Spark™ 2.x with Databricks
Jump Start on Apache® Spark™ 2.x with Databricks
 
Intro to Spark development
 Intro to Spark development  Intro to Spark development
Intro to Spark development
 
Data Science at Scale by Sarah Guido
Data Science at Scale by Sarah GuidoData Science at Scale by Sarah Guido
Data Science at Scale by Sarah Guido
 
Fast Data Analytics with Spark and Python
Fast Data Analytics with Spark and PythonFast Data Analytics with Spark and Python
Fast Data Analytics with Spark and Python
 
Spark Summit EU talk by Christos Erotocritou
Spark Summit EU talk by Christos ErotocritouSpark Summit EU talk by Christos Erotocritou
Spark Summit EU talk by Christos Erotocritou
 
Graph Analytics in Spark
Graph Analytics in SparkGraph Analytics in Spark
Graph Analytics in Spark
 
Implementing the Lambda Architecture efficiently with Apache Spark
Implementing the Lambda Architecture efficiently with Apache SparkImplementing the Lambda Architecture efficiently with Apache Spark
Implementing the Lambda Architecture efficiently with Apache Spark
 
Native Support of Prometheus Monitoring in Apache Spark 3.0
Native Support of Prometheus Monitoring in Apache Spark 3.0Native Support of Prometheus Monitoring in Apache Spark 3.0
Native Support of Prometheus Monitoring in Apache Spark 3.0
 
Spark and Cassandra: An Amazing Apache Love Story by Patrick McFadin
Spark and Cassandra: An Amazing Apache Love Story by Patrick McFadinSpark and Cassandra: An Amazing Apache Love Story by Patrick McFadin
Spark and Cassandra: An Amazing Apache Love Story by Patrick McFadin
 

Viewers also liked

Zero to Streaming: Spark and Cassandra
Zero to Streaming: Spark and CassandraZero to Streaming: Spark and Cassandra
Zero to Streaming: Spark and CassandraRussell Spitzer
 
Data Science in Future Tense
Data Science in Future TenseData Science in Future Tense
Data Science in Future TensePaco Nathan
 
#MesosCon 2014: Spark on Mesos
#MesosCon 2014: Spark on Mesos#MesosCon 2014: Spark on Mesos
#MesosCon 2014: Spark on MesosPaco Nathan
 
OSCON 2014: Data Workflows for Machine Learning
OSCON 2014: Data Workflows for Machine LearningOSCON 2014: Data Workflows for Machine Learning
OSCON 2014: Data Workflows for Machine LearningPaco Nathan
 
Big Data is changing abruptly, and where it is likely heading
Big Data is changing abruptly, and where it is likely headingBig Data is changing abruptly, and where it is likely heading
Big Data is changing abruptly, and where it is likely headingPaco Nathan
 
Future of data science as a profession
Future of data science as a professionFuture of data science as a profession
Future of data science as a professionJose Quesada
 
Big data & data science challenges and opportunities
Big data & data science   challenges and opportunitiesBig data & data science   challenges and opportunities
Big data & data science challenges and opportunitiesJose Quesada
 
Data Science in 2016: Moving Up
Data Science in 2016: Moving UpData Science in 2016: Moving Up
Data Science in 2016: Moving UpPaco Nathan
 
Data Science Reinvents Learning?
Data Science Reinvents Learning?Data Science Reinvents Learning?
Data Science Reinvents Learning?Paco Nathan
 
GalvanizeU Seattle: Eleven Almost-Truisms About Data
GalvanizeU Seattle: Eleven Almost-Truisms About DataGalvanizeU Seattle: Eleven Almost-Truisms About Data
GalvanizeU Seattle: Eleven Almost-Truisms About DataPaco Nathan
 
Spark, the new age of data scientist
Spark, the new age of data scientistSpark, the new age of data scientist
Spark, the new age of data scientistMassimiliano Martella
 
Preso spark leadership
Preso spark leadershipPreso spark leadership
Preso spark leadershipsjoerdluteyn
 
Spark introduction - In Chinese
Spark introduction - In ChineseSpark introduction - In Chinese
Spark introduction - In Chinesecolorant
 
Spark the next top compute model
Spark   the next top compute modelSpark   the next top compute model
Spark the next top compute modelDean Wampler
 
How Apache Spark fits in the Big Data landscape
How Apache Spark fits in the Big Data landscapeHow Apache Spark fits in the Big Data landscape
How Apache Spark fits in the Big Data landscapePaco Nathan
 
Use of standards and related issues in predictive analytics
Use of standards and related issues in predictive analyticsUse of standards and related issues in predictive analytics
Use of standards and related issues in predictive analyticsPaco Nathan
 

Viewers also liked (20)

Zero to Streaming: Spark and Cassandra
Zero to Streaming: Spark and CassandraZero to Streaming: Spark and Cassandra
Zero to Streaming: Spark and Cassandra
 
Data Science in Future Tense
Data Science in Future TenseData Science in Future Tense
Data Science in Future Tense
 
#MesosCon 2014: Spark on Mesos
#MesosCon 2014: Spark on Mesos#MesosCon 2014: Spark on Mesos
#MesosCon 2014: Spark on Mesos
 
OSCON 2014: Data Workflows for Machine Learning
OSCON 2014: Data Workflows for Machine LearningOSCON 2014: Data Workflows for Machine Learning
OSCON 2014: Data Workflows for Machine Learning
 
Big Data is changing abruptly, and where it is likely heading
Big Data is changing abruptly, and where it is likely headingBig Data is changing abruptly, and where it is likely heading
Big Data is changing abruptly, and where it is likely heading
 
Future of data science as a profession
Future of data science as a professionFuture of data science as a profession
Future of data science as a profession
 
Big data & data science challenges and opportunities
Big data & data science   challenges and opportunitiesBig data & data science   challenges and opportunities
Big data & data science challenges and opportunities
 
Data Science in 2016: Moving Up
Data Science in 2016: Moving UpData Science in 2016: Moving Up
Data Science in 2016: Moving Up
 
Data Science Reinvents Learning?
Data Science Reinvents Learning?Data Science Reinvents Learning?
Data Science Reinvents Learning?
 
GalvanizeU Seattle: Eleven Almost-Truisms About Data
GalvanizeU Seattle: Eleven Almost-Truisms About DataGalvanizeU Seattle: Eleven Almost-Truisms About Data
GalvanizeU Seattle: Eleven Almost-Truisms About Data
 
Spark, the new age of data scientist
Spark, the new age of data scientistSpark, the new age of data scientist
Spark, the new age of data scientist
 
Spark - Philly JUG
Spark  - Philly JUGSpark  - Philly JUG
Spark - Philly JUG
 
Performance
PerformancePerformance
Performance
 
Preso spark leadership
Preso spark leadershipPreso spark leadership
Preso spark leadership
 
Spark introduction - In Chinese
Spark introduction - In ChineseSpark introduction - In Chinese
Spark introduction - In Chinese
 
Apache Spark with Scala
Apache Spark with ScalaApache Spark with Scala
Apache Spark with Scala
 
Spark the next top compute model
Spark   the next top compute modelSpark   the next top compute model
Spark the next top compute model
 
How Apache Spark fits in the Big Data landscape
How Apache Spark fits in the Big Data landscapeHow Apache Spark fits in the Big Data landscape
How Apache Spark fits in the Big Data landscape
 
Use of standards and related issues in predictive analytics
Use of standards and related issues in predictive analyticsUse of standards and related issues in predictive analytics
Use of standards and related issues in predictive analytics
 
Intro to Apache Spark
Intro to Apache SparkIntro to Apache Spark
Intro to Apache Spark
 

Similar to Tiny Batches, in the wine: Shiny New Bits in Spark Streaming

What's new with Apache Spark?
What's new with Apache Spark?What's new with Apache Spark?
What's new with Apache Spark?Paco Nathan
 
How Apache Spark fits into the Big Data landscape
How Apache Spark fits into the Big Data landscapeHow Apache Spark fits into the Big Data landscape
How Apache Spark fits into the Big Data landscapePaco Nathan
 
Big Data Everywhere Chicago: Apache Spark Plus Many Other Frameworks -- How S...
Big Data Everywhere Chicago: Apache Spark Plus Many Other Frameworks -- How S...Big Data Everywhere Chicago: Apache Spark Plus Many Other Frameworks -- How S...
Big Data Everywhere Chicago: Apache Spark Plus Many Other Frameworks -- How S...BigDataEverywhere
 
IBM Strategy for Spark
IBM Strategy for SparkIBM Strategy for Spark
IBM Strategy for SparkMark Kerzner
 
Scaling up with Cisco Big Data: Data + Science = Data Science
Scaling up with Cisco Big Data: Data + Science = Data ScienceScaling up with Cisco Big Data: Data + Science = Data Science
Scaling up with Cisco Big Data: Data + Science = Data ScienceeRic Choo
 
An Insider’s Guide to Maximizing Spark SQL Performance
 An Insider’s Guide to Maximizing Spark SQL Performance An Insider’s Guide to Maximizing Spark SQL Performance
An Insider’s Guide to Maximizing Spark SQL PerformanceTakuya UESHIN
 
A look under the hood at Apache Spark's API and engine evolutions
A look under the hood at Apache Spark's API and engine evolutionsA look under the hood at Apache Spark's API and engine evolutions
A look under the hood at Apache Spark's API and engine evolutionsDatabricks
 
Media_Entertainment_Veriticals
Media_Entertainment_VeriticalsMedia_Entertainment_Veriticals
Media_Entertainment_VeriticalsPeyman Mohajerian
 
Teaching Apache Spark: Demonstrations on the Databricks Cloud Platform
Teaching Apache Spark: Demonstrations on the Databricks Cloud PlatformTeaching Apache Spark: Demonstrations on the Databricks Cloud Platform
Teaching Apache Spark: Demonstrations on the Databricks Cloud PlatformYao Yao
 
An introduction To Apache Spark
An introduction To Apache SparkAn introduction To Apache Spark
An introduction To Apache SparkAmir Sedighi
 
Build Deep Learning Applications for Big Data Platforms (CVPR 2018 tutorial)
Build Deep Learning Applications for Big Data Platforms (CVPR 2018 tutorial)Build Deep Learning Applications for Big Data Platforms (CVPR 2018 tutorial)
Build Deep Learning Applications for Big Data Platforms (CVPR 2018 tutorial)Jason Dai
 
Spark Streaming the Industrial IoT
Spark Streaming the Industrial IoTSpark Streaming the Industrial IoT
Spark Streaming the Industrial IoTJim Haughwout
 
Spark streaming , Spark SQL
Spark streaming , Spark SQLSpark streaming , Spark SQL
Spark streaming , Spark SQLYousun Jeong
 
Data Engineer's Lunch #82: Automating Apache Cassandra Operations with Apache...
Data Engineer's Lunch #82: Automating Apache Cassandra Operations with Apache...Data Engineer's Lunch #82: Automating Apache Cassandra Operations with Apache...
Data Engineer's Lunch #82: Automating Apache Cassandra Operations with Apache...Anant Corporation
 
What's new in spark 2.0?
What's new in spark 2.0?What's new in spark 2.0?
What's new in spark 2.0?Örjan Lundberg
 
Unified Big Data Processing with Apache Spark
Unified Big Data Processing with Apache SparkUnified Big Data Processing with Apache Spark
Unified Big Data Processing with Apache SparkC4Media
 
Jump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on DatabricksJump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on DatabricksAnyscale
 
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3Databricks
 

Similar to Tiny Batches, in the wine: Shiny New Bits in Spark Streaming (20)

What's new with Apache Spark?
What's new with Apache Spark?What's new with Apache Spark?
What's new with Apache Spark?
 
How Apache Spark fits into the Big Data landscape
How Apache Spark fits into the Big Data landscapeHow Apache Spark fits into the Big Data landscape
How Apache Spark fits into the Big Data landscape
 
Big Data Everywhere Chicago: Apache Spark Plus Many Other Frameworks -- How S...
Big Data Everywhere Chicago: Apache Spark Plus Many Other Frameworks -- How S...Big Data Everywhere Chicago: Apache Spark Plus Many Other Frameworks -- How S...
Big Data Everywhere Chicago: Apache Spark Plus Many Other Frameworks -- How S...
 
Dev Ops Training
Dev Ops TrainingDev Ops Training
Dev Ops Training
 
IBM Strategy for Spark
IBM Strategy for SparkIBM Strategy for Spark
IBM Strategy for Spark
 
Scaling up with Cisco Big Data: Data + Science = Data Science
Scaling up with Cisco Big Data: Data + Science = Data ScienceScaling up with Cisco Big Data: Data + Science = Data Science
Scaling up with Cisco Big Data: Data + Science = Data Science
 
An Insider’s Guide to Maximizing Spark SQL Performance
 An Insider’s Guide to Maximizing Spark SQL Performance An Insider’s Guide to Maximizing Spark SQL Performance
An Insider’s Guide to Maximizing Spark SQL Performance
 
A look under the hood at Apache Spark's API and engine evolutions
A look under the hood at Apache Spark's API and engine evolutionsA look under the hood at Apache Spark's API and engine evolutions
A look under the hood at Apache Spark's API and engine evolutions
 
Media_Entertainment_Veriticals
Media_Entertainment_VeriticalsMedia_Entertainment_Veriticals
Media_Entertainment_Veriticals
 
Teaching Apache Spark: Demonstrations on the Databricks Cloud Platform
Teaching Apache Spark: Demonstrations on the Databricks Cloud PlatformTeaching Apache Spark: Demonstrations on the Databricks Cloud Platform
Teaching Apache Spark: Demonstrations on the Databricks Cloud Platform
 
An introduction To Apache Spark
An introduction To Apache SparkAn introduction To Apache Spark
An introduction To Apache Spark
 
Build Deep Learning Applications for Big Data Platforms (CVPR 2018 tutorial)
Build Deep Learning Applications for Big Data Platforms (CVPR 2018 tutorial)Build Deep Learning Applications for Big Data Platforms (CVPR 2018 tutorial)
Build Deep Learning Applications for Big Data Platforms (CVPR 2018 tutorial)
 
Spark Streaming the Industrial IoT
Spark Streaming the Industrial IoTSpark Streaming the Industrial IoT
Spark Streaming the Industrial IoT
 
Spark streaming , Spark SQL
Spark streaming , Spark SQLSpark streaming , Spark SQL
Spark streaming , Spark SQL
 
Data Engineer's Lunch #82: Automating Apache Cassandra Operations with Apache...
Data Engineer's Lunch #82: Automating Apache Cassandra Operations with Apache...Data Engineer's Lunch #82: Automating Apache Cassandra Operations with Apache...
Data Engineer's Lunch #82: Automating Apache Cassandra Operations with Apache...
 
What's new in spark 2.0?
What's new in spark 2.0?What's new in spark 2.0?
What's new in spark 2.0?
 
Unified Big Data Processing with Apache Spark
Unified Big Data Processing with Apache SparkUnified Big Data Processing with Apache Spark
Unified Big Data Processing with Apache Spark
 
Big data apache spark + scala
Big data   apache spark + scalaBig data   apache spark + scala
Big data apache spark + scala
 
Jump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on DatabricksJump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on Databricks
 
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
 

More from Paco Nathan

Human in the loop: a design pattern for managing teams working with ML
Human in the loop: a design pattern for managing  teams working with MLHuman in the loop: a design pattern for managing  teams working with ML
Human in the loop: a design pattern for managing teams working with MLPaco Nathan
 
Human-in-the-loop: a design pattern for managing teams that leverage ML
Human-in-the-loop: a design pattern for managing teams that leverage MLHuman-in-the-loop: a design pattern for managing teams that leverage ML
Human-in-the-loop: a design pattern for managing teams that leverage MLPaco Nathan
 
Human-in-a-loop: a design pattern for managing teams which leverage ML
Human-in-a-loop: a design pattern for managing teams which leverage MLHuman-in-a-loop: a design pattern for managing teams which leverage ML
Human-in-a-loop: a design pattern for managing teams which leverage MLPaco Nathan
 
Humans in a loop: Jupyter notebooks as a front-end for AI
Humans in a loop: Jupyter notebooks as a front-end for AIHumans in a loop: Jupyter notebooks as a front-end for AI
Humans in a loop: Jupyter notebooks as a front-end for AIPaco Nathan
 
Humans in the loop: AI in open source and industry
Humans in the loop: AI in open source and industryHumans in the loop: AI in open source and industry
Humans in the loop: AI in open source and industryPaco Nathan
 
Computable Content
Computable ContentComputable Content
Computable ContentPaco Nathan
 
Computable Content: Lessons Learned
Computable Content: Lessons LearnedComputable Content: Lessons Learned
Computable Content: Lessons LearnedPaco Nathan
 
SF Python Meetup: TextRank in Python
SF Python Meetup: TextRank in PythonSF Python Meetup: TextRank in Python
SF Python Meetup: TextRank in PythonPaco Nathan
 
Jupyter for Education: Beyond Gutenberg and Erasmus
Jupyter for Education: Beyond Gutenberg and ErasmusJupyter for Education: Beyond Gutenberg and Erasmus
Jupyter for Education: Beyond Gutenberg and ErasmusPaco Nathan
 
GraphX: Graph analytics for insights about developer communities
GraphX: Graph analytics for insights about developer communitiesGraphX: Graph analytics for insights about developer communities
GraphX: Graph analytics for insights about developer communitiesPaco Nathan
 
A New Year in Data Science: ML Unpaused
A New Year in Data Science: ML UnpausedA New Year in Data Science: ML Unpaused
A New Year in Data Science: ML UnpausedPaco Nathan
 
Brief Intro to Apache Spark @ Stanford ICME
Brief Intro to Apache Spark @ Stanford ICMEBrief Intro to Apache Spark @ Stanford ICME
Brief Intro to Apache Spark @ Stanford ICMEPaco Nathan
 

More from Paco Nathan (12)

Human in the loop: a design pattern for managing teams working with ML
Human in the loop: a design pattern for managing  teams working with MLHuman in the loop: a design pattern for managing  teams working with ML
Human in the loop: a design pattern for managing teams working with ML
 
Human-in-the-loop: a design pattern for managing teams that leverage ML
Human-in-the-loop: a design pattern for managing teams that leverage MLHuman-in-the-loop: a design pattern for managing teams that leverage ML
Human-in-the-loop: a design pattern for managing teams that leverage ML
 
Human-in-a-loop: a design pattern for managing teams which leverage ML
Human-in-a-loop: a design pattern for managing teams which leverage MLHuman-in-a-loop: a design pattern for managing teams which leverage ML
Human-in-a-loop: a design pattern for managing teams which leverage ML
 
Humans in a loop: Jupyter notebooks as a front-end for AI
Humans in a loop: Jupyter notebooks as a front-end for AIHumans in a loop: Jupyter notebooks as a front-end for AI
Humans in a loop: Jupyter notebooks as a front-end for AI
 
Humans in the loop: AI in open source and industry
Humans in the loop: AI in open source and industryHumans in the loop: AI in open source and industry
Humans in the loop: AI in open source and industry
 
Computable Content
Computable ContentComputable Content
Computable Content
 
Computable Content: Lessons Learned
Computable Content: Lessons LearnedComputable Content: Lessons Learned
Computable Content: Lessons Learned
 
SF Python Meetup: TextRank in Python
SF Python Meetup: TextRank in PythonSF Python Meetup: TextRank in Python
SF Python Meetup: TextRank in Python
 
Jupyter for Education: Beyond Gutenberg and Erasmus
Jupyter for Education: Beyond Gutenberg and ErasmusJupyter for Education: Beyond Gutenberg and Erasmus
Jupyter for Education: Beyond Gutenberg and Erasmus
 
GraphX: Graph analytics for insights about developer communities
GraphX: Graph analytics for insights about developer communitiesGraphX: Graph analytics for insights about developer communities
GraphX: Graph analytics for insights about developer communities
 
A New Year in Data Science: ML Unpaused
A New Year in Data Science: ML UnpausedA New Year in Data Science: ML Unpaused
A New Year in Data Science: ML Unpaused
 
Brief Intro to Apache Spark @ Stanford ICME
Brief Intro to Apache Spark @ Stanford ICMEBrief Intro to Apache Spark @ Stanford ICME
Brief Intro to Apache Spark @ Stanford ICME
 

Recently uploaded

How AI and ChatGPT are changing cybersecurity forever.pptx
How AI and ChatGPT are changing cybersecurity forever.pptxHow AI and ChatGPT are changing cybersecurity forever.pptx
How AI and ChatGPT are changing cybersecurity forever.pptxInfosec
 
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24Umar Saif
 
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...UiPathCommunity
 
LF Energy Webinar: Introduction to TROLIE
LF Energy Webinar: Introduction to TROLIELF Energy Webinar: Introduction to TROLIE
LF Energy Webinar: Introduction to TROLIEDanBrown980551
 
Dynamical systems simulation in Python for science and engineering
Dynamical systems simulation in Python for science and engineeringDynamical systems simulation in Python for science and engineering
Dynamical systems simulation in Python for science and engineeringMassimo Talia
 
"Platform Engineering with Development Containers", Igor Fesenko
"Platform Engineering with Development Containers", Igor Fesenko"Platform Engineering with Development Containers", Igor Fesenko
"Platform Engineering with Development Containers", Igor FesenkoFwdays
 
10 things that helped me advance my career - PHP UK Conference 2024
10 things that helped me advance my career - PHP UK Conference 202410 things that helped me advance my career - PHP UK Conference 2024
10 things that helped me advance my career - PHP UK Conference 2024Thijs Feryn
 
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, GoogleISPMAIndia
 
Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...
Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...
Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...Product School
 
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...DianaGray10
 
Enhancing Productivity and Insight A Tour of JDK Tools Progress Beyond Java 17
Enhancing Productivity and Insight  A Tour of JDK Tools Progress Beyond Java 17Enhancing Productivity and Insight  A Tour of JDK Tools Progress Beyond Java 17
Enhancing Productivity and Insight A Tour of JDK Tools Progress Beyond Java 17Ana-Maria Mihalceanu
 
The Future of Product, by Founder & CEO, Product School
The Future of Product, by Founder & CEO, Product SchoolThe Future of Product, by Founder & CEO, Product School
The Future of Product, by Founder & CEO, Product SchoolProduct School
 
"DevOps Practisting Platform on EKS with Karpenter autoscaling", Dmytro Kozhevin
"DevOps Practisting Platform on EKS with Karpenter autoscaling", Dmytro Kozhevin"DevOps Practisting Platform on EKS with Karpenter autoscaling", Dmytro Kozhevin
"DevOps Practisting Platform on EKS with Karpenter autoscaling", Dmytro KozhevinFwdays
 
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERNRonnelBaroc
 
Are Human-generated Demonstrations Necessary for In-context Learning?
Are Human-generated Demonstrations Necessary for In-context Learning?Are Human-generated Demonstrations Necessary for In-context Learning?
Are Human-generated Demonstrations Necessary for In-context Learning?MENGSAYLOEM1
 
"AIRe - AI Reliability Engineering", Denys Vasyliev
"AIRe - AI Reliability Engineering", Denys Vasyliev"AIRe - AI Reliability Engineering", Denys Vasyliev
"AIRe - AI Reliability Engineering", Denys VasylievFwdays
 
Avoiding Bad Stats and the Benefits of Playing Trivia with Friends: PancakesC...
Avoiding Bad Stats and the Benefits of Playing Trivia with Friends: PancakesC...Avoiding Bad Stats and the Benefits of Playing Trivia with Friends: PancakesC...
Avoiding Bad Stats and the Benefits of Playing Trivia with Friends: PancakesC...Adrian Sanabria
 
Digital Transformation Strategy & Plan Templates - www.beyondthecloud.digital...
Digital Transformation Strategy & Plan Templates - www.beyondthecloud.digital...Digital Transformation Strategy & Plan Templates - www.beyondthecloud.digital...
Digital Transformation Strategy & Plan Templates - www.beyondthecloud.digital...MarcovanHurne2
 
The Art of the Possible with Graph by Dr Jim Webber Neo4j.pptx
The Art of the Possible with Graph by Dr Jim Webber Neo4j.pptxThe Art of the Possible with Graph by Dr Jim Webber Neo4j.pptx
The Art of the Possible with Graph by Dr Jim Webber Neo4j.pptxNeo4j
 
AI Act & Standardization: UNINFO involvement
AI Act & Standardization: UNINFO involvementAI Act & Standardization: UNINFO involvement
AI Act & Standardization: UNINFO involvementMimmo Squillace
 

Recently uploaded (20)

How AI and ChatGPT are changing cybersecurity forever.pptx
How AI and ChatGPT are changing cybersecurity forever.pptxHow AI and ChatGPT are changing cybersecurity forever.pptx
How AI and ChatGPT are changing cybersecurity forever.pptx
 
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24
 
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
 
LF Energy Webinar: Introduction to TROLIE
LF Energy Webinar: Introduction to TROLIELF Energy Webinar: Introduction to TROLIE
LF Energy Webinar: Introduction to TROLIE
 
Dynamical systems simulation in Python for science and engineering
Dynamical systems simulation in Python for science and engineeringDynamical systems simulation in Python for science and engineering
Dynamical systems simulation in Python for science and engineering
 
"Platform Engineering with Development Containers", Igor Fesenko
"Platform Engineering with Development Containers", Igor Fesenko"Platform Engineering with Development Containers", Igor Fesenko
"Platform Engineering with Development Containers", Igor Fesenko
 
10 things that helped me advance my career - PHP UK Conference 2024
10 things that helped me advance my career - PHP UK Conference 202410 things that helped me advance my career - PHP UK Conference 2024
10 things that helped me advance my career - PHP UK Conference 2024
 
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
 
Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...
Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...
Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...
 
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...
 
Enhancing Productivity and Insight A Tour of JDK Tools Progress Beyond Java 17
Enhancing Productivity and Insight  A Tour of JDK Tools Progress Beyond Java 17Enhancing Productivity and Insight  A Tour of JDK Tools Progress Beyond Java 17
Enhancing Productivity and Insight A Tour of JDK Tools Progress Beyond Java 17
 
The Future of Product, by Founder & CEO, Product School
The Future of Product, by Founder & CEO, Product SchoolThe Future of Product, by Founder & CEO, Product School
The Future of Product, by Founder & CEO, Product School
 
"DevOps Practisting Platform on EKS with Karpenter autoscaling", Dmytro Kozhevin
"DevOps Practisting Platform on EKS with Karpenter autoscaling", Dmytro Kozhevin"DevOps Practisting Platform on EKS with Karpenter autoscaling", Dmytro Kozhevin
"DevOps Practisting Platform on EKS with Karpenter autoscaling", Dmytro Kozhevin
 
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
 
Are Human-generated Demonstrations Necessary for In-context Learning?
Are Human-generated Demonstrations Necessary for In-context Learning?Are Human-generated Demonstrations Necessary for In-context Learning?
Are Human-generated Demonstrations Necessary for In-context Learning?
 
"AIRe - AI Reliability Engineering", Denys Vasyliev
"AIRe - AI Reliability Engineering", Denys Vasyliev"AIRe - AI Reliability Engineering", Denys Vasyliev
"AIRe - AI Reliability Engineering", Denys Vasyliev
 
Avoiding Bad Stats and the Benefits of Playing Trivia with Friends: PancakesC...
Avoiding Bad Stats and the Benefits of Playing Trivia with Friends: PancakesC...Avoiding Bad Stats and the Benefits of Playing Trivia with Friends: PancakesC...
Avoiding Bad Stats and the Benefits of Playing Trivia with Friends: PancakesC...
 
Digital Transformation Strategy & Plan Templates - www.beyondthecloud.digital...
Digital Transformation Strategy & Plan Templates - www.beyondthecloud.digital...Digital Transformation Strategy & Plan Templates - www.beyondthecloud.digital...
Digital Transformation Strategy & Plan Templates - www.beyondthecloud.digital...
 
The Art of the Possible with Graph by Dr Jim Webber Neo4j.pptx
The Art of the Possible with Graph by Dr Jim Webber Neo4j.pptxThe Art of the Possible with Graph by Dr Jim Webber Neo4j.pptx
The Art of the Possible with Graph by Dr Jim Webber Neo4j.pptx
 
AI Act & Standardization: UNINFO involvement
AI Act & Standardization: UNINFO involvementAI Act & Standardization: UNINFO involvement
AI Act & Standardization: UNINFO involvement
 

Tiny Batches, in the wine: Shiny New Bits in Spark Streaming

  • 1. Tiny Batches, in the wine: Shiny New Bits in Spark Streaming London Spark Meetup 2014-11-11 meetup.com/Spark-London/events/217362972/ Paco Nathan @pacoid 1
  • 2. BTW, in case anyone didn’t get the pun… http://youtu.be/mlCiDEXuxxA 2
  • 4. Spark, the elevator pitch Developed in 2009 at UC Berkeley AMPLab, open sourced in 2010, Spark has since become one of the largest OSS communities in big data, with over 200 contributors in 50+ organizations spark.apache.org “Organizations that are looking at big data challenges – including collection, ETL, storage, exploration and analytics – should consider Spark for its in-memory performance and the breadth of its model. It supports advanced analytics solutions on Hadoop clusters, including the iterative model required for machine learning and graph analysis.” Gartner, Advanced Analytics and Data Science (2014) 4
  • 6. Spark, the elevator pitch Spark Core is the general execution engine for the Spark platform that other functionality is built atop: ! • in-memory computing capabilities deliver speed • general execution model supports wide variety of use cases • ease of development – native APIs in Java, Scala, Python (+ SQL, Clojure, R) 6
  • 7. WordCount in 3 lines of Spark Spark, the elevator pitch WordCount in 50+ lines of Java MR 7
  • 8. Spark, the elevator pitch Sustained exponential growth, as one of the most active Apache projects ohloh.net/orgs/apache 8
  • 9. A very brief history 9
  • 10. A Brief History: Functional Programming for Big Data Theory, eight decades ago: what can be computed? Haskell Curry haskell.org Alonso Church wikipedia.org Praxis, four decades ago: algebra for applicative systems John Backus acm.org David Turner wikipedia.org Reality, two decades ago: machine data from web apps Pattie Maes MIT Media Lab 10
  • 11. A Brief History: Functional Programming for Big Data circa 2002: mitigate risk of large distributed workloads lost due to disk failures on commodity hardware… Google File System Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung research.google.com/archive/gfs.html ! MapReduce: Simplified Data Processing on Large Clusters Jeffrey Dean, Sanjay Ghemawat research.google.com/archive/mapreduce.html 11
  • 12. A Brief History: Functional Programming for Big Data 2002 2004 MapReduce paper 2002 MapReduce @ Google 2004 2006 2008 2010 2012 2014 2006 Hadoop @ Yahoo! 2014 Apache Spark top-level 2010 Spark paper 2008 Hadoop Summit 12
  • 13. A Brief History: Functional Programming for Big Data MapReduce Pregel Giraph Dremel Drill S4 Storm F1 MillWheel General Batch Processing Specialized Systems: Impala GraphLab iterative, interactive, streaming, graph, etc. Tez MR doesn’t compose well for large applications, and so specialized systems emerged as workarounds 13
  • 14. A Brief History: Functional Programming for Big Data circa 2010: a unified engine for enterprise data workflows, based on commodity hardware a decade later… Spark: Cluster Computing with Working Sets Matei Zaharia, Mosharaf Chowdhury, Michael Franklin, Scott Shenker, Ion Stoica people.csail.mit.edu/matei/papers/2010/hotcloud_spark.pdf ! Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker, Ion Stoica usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf 14
  • 15. TL;DR: Applicative Systems and Functional Programming – RDDs action value RDD RDD RDD transformations RDD // transformed RDDs! val errors = lines.filter(_.startsWith("ERROR"))! val messages = errors.map(_.split("t")).map(r => r(1))! messages.cache() // action 1! messages.filter(_.contains("mysql")).count() 15
  • 16. TL;DR: Generational trade-offs for distributing compute tasks Cheap Memory Cheap Storage Cheap Network recompute replicate reference (RDD) (DFS) (URI) 16
  • 17. TL;DR: Smashing The Previous Petabyte Sort Record databricks.com/blog/2014/11/05/spark-officially-sets- a-new-record-in-large-scale-sorting.html 17
  • 19. Why Streaming? Because Machine Data! I <3 Logs Jay Kreps O’Reilly (2014) shop.oreilly.com/product/ 0636920034339.do 19
  • 20. Why Streaming? Because Google! MillWheel: Fault-Tolerant Stream Processing at Internet Scale Tyler Akidau, Alex Balikov, Kaya Bekiroglu, Slava Chernyak, Josh Haberman, Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, Sam Whittle Very Large Data Bases (2013) research.google.com/pubs/ pub41378.html 20
  • 21. Why Streaming? Because IoT! kickstarter.com/projects/1614456084/b4rm4n-be- a-cocktail-hero 21
  • 22. Why Streaming? Because IoT! (exabytes/day per sensor) bits.blogs.nytimes.com/2013/06/19/g-e-makes-the-machine- and-then-uses-sensors-to-listen-to-it/ 22
  • 24. Spark Streaming: Requirements Let’s consider the top-level requirements for a streaming framework: • clusters scalable to 100’s of nodes • low-latency, in the range of seconds (meets 90% of use case needs) • efficient recovery from failures (which is a hard problem in CS) • integrates with batch: many co’s run the same business logic both online+offline 24
  • 25. Spark Streaming: Requirements Therefore, run a streaming computation as: a series of very small, deterministic batch jobs ! • Chop up the live stream into batches of X seconds • Spark treats each batch of data as RDDs and processes them using RDD operations • Finally, the processed results of the RDD operations are returned in batches 25
  • 26. Spark Streaming: Requirements Therefore, run a streaming computation as: a series of very small, deterministic batch jobs ! • Batch sizes as low as ½ sec, latency of about 1 sec • Potential for combining batch processing and streaming processing in the same system 26
  • 27. Spark Streaming: Integration Data can be ingested from many sources: Kafka, Flume, Twitter, ZeroMQ, TCP sockets, etc. Results can be pushed out to filesystems, databases, live dashboards, etc. Spark’s built-in machine learning algorithms and graph processing algorithms can be applied to data streams 27
  • 28. Spark Streaming: Timeline 2012 project started 2013 alpha release (Spark 0.7) 2014 graduated (Spark 0.9) Discretized Streams: A Fault-Tolerant Model for Scalable Stream Processing Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, Ion Stoica Berkeley EECS (2012-12-14) www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-259.pdf project lead: Tathagata Das @tathadas 28
  • 29. Spark Streaming: Requirements Typical kinds of applications: • datacenter operations • web app funnel metrics • ad optimization • anti-fraud • various telematics and much much more! 29
  • 30. Spark Streaming: Some Excellent Resources Programming Guide spark.apache.org/docs/latest/streaming-programming- guide.html TD @ Spark Summit 2014 youtu.be/o-NXwFrNAWQ?list=PLTPXxbhUt- YWGNTaDj6HSjnHMxiTD1HCR “Deep Dive into Spark Streaming” slideshare.net/spark-project/deep-divewithsparkstreaming-tathagatadassparkmeetup20130617 Spark Reference Applications databricks.gitbooks.io/databricks-spark-reference- applications/ 30
  • 31. Quiz: name the bits and pieces… import org.apache.spark.streaming._! import org.apache.spark.streaming.StreamingContext._! ! // create a StreamingContext with a SparkConf configuration! val ssc = new StreamingContext(sparkConf, Seconds(10))! ! // create a DStream that will connect to serverIP:serverPort! val lines = ssc.socketTextStream(serverIP, serverPort)! ! // split each line into words! val words = lines.flatMap(_.split(" "))! ! // count each word in each batch! val pairs = words.map(word => (word, 1))! val wordCounts = pairs.reduceByKey(_ + _)! ! // print a few of the counts to the console! wordCounts.print()! ! ssc.start()! ssc.awaitTermination() 31
  • 33. Because Use Cases: +40 known production use cases 33
  • 34. Because Use Cases: Analysis Reasons for adopting/transitioning to Spark Streaming… the unified programming model is particularly relevant for real-time analytics that combine historical data: • Making data science accessible to non-scientists • Higher productivity for data workers • Exactly-once semantics • No compromises on scalability and throughput • Ease of operations 34
  • 35. Because Use Cases: Analysis Reasons for adopting Spark Streaming: • Making data science accessible to non-scientists Spark’s declarative APIs enable users who have domain expertise but lack data science expertise. In other words, express a business problem and its associated processing algorithm and data pipeline by using simple, high-level operators. 35
  • 36. Because Use Cases: Analysis Reasons for adopting Spark Streaming: • Higher productivity for data workers Spark’s write-once-run-anywhere approach unifies batch and stream processing. That ties together the different components of an analytics pipeline in the same tool – discovery, ETL, data engineering, machine learning model training and execution – across all types of structured and unstructured data. 36
  • 37. Because Use Cases: Analysis Reasons for adopting Spark Streaming: • Exactly-once semantics Many crucial use cases in business need exactly-once stateful processing Not at-most-once (which includes zero) or at-least-once (which includes duplicates) Exactly-once provides users certainty on questions such as the exact number of fraud cases, emergencies, or outages occurring within a time period 37
  • 38. Because Use Cases: Analysis Reasons for adopting Spark Streaming: • No compromises on scalability and throughput Spark Streaming is designed for hyper-scale environments and combines statefulness and persistence with high throughput. 38
  • 39. Because Use Cases: Analysis Reasons for adopting Spark Streaming: • Ease of operations Spark provides a unified run time across different processing engines. One physical cluster and one set of operational processes covers the full spectrum of use cases. 39
  • 40. Because Use Cases: Sharethrough Sharethrough Uses Spark Streaming to Optimize Bidding in Real Time Russell Cardullo, Michael Ruggier 2014-03-25 databricks.com/blog/2014/03/25/ sharethrough-and-spark-streaming.html • the profile of a 24 x 7 streaming app is different than an hourly batch job… • take time to validate output against the input… • confirm that supporting objects are being serialized… • the output of your Spark Streaming job is only as reliable as the queue that feeds Spark… • monoids… 40
  • 41. Because Use Cases: Viadeo Spark Streaming As Near Realtime ETL Djamel Zouaoui 2014-09-18 slideshare.net/DjamelZouaoui/spark-streaming • Spark Streaming is topology-free • workers and receivers are autonomous and independent • paired with Kafka, RabbitMQ • 8 machines / 120 cores • use case for recommender system • issues: how to handle lost data, serialization 41
  • 42. Because Use Cases: Stratio Stratio Streaming: a new approach to Spark Streaming David Morales, Oscar Mendez 2014-06-30 spark-summit.org/2014/talk/stratio-streaming- a-new-approach-to-spark-streaming • Stratio Streaming is the union of a real-time messaging bus with a complex event processing engine using Spark Streaming • allows the creation of streams and queries on the fly • paired with Siddhi CEP engine and Apache Kafka • added global features to the engine such as auditing 42 and statistics
  • 43. Because Use Cases: Ooyala Productionizing a 24/7 Spark Streaming service on YARN Issac Buenrostro, Arup Malakar 2014-06-30 spark-summit.org/2014/talk/ productionizing-a-247-spark-streaming-service- on-yarn • state-of-the-art ingestion pipeline, processing over two billion video events a day • how do you ensure 24/7 availability and fault tolerance? • what are the best practices for Spark Streaming and its integration with Kafka and YARN? • how do you monitor and instrument the various 43 stages of the pipeline?
  • 44. Because Use Cases: Guavus Guavus Embeds Apache Spark into its Operational Intelligence Platform Deployed at the World’s Largest Telcos Eric Carr 2014-09-25 databricks.com/blog/2014/09/25/guavus-embeds-apache-spark-into- its-operational-intelligence-platform-deployed-at-the-worlds- largest-telcos.html • 4 of 5 top mobile network operators, 3 of 5 top Internet backbone providers, 80% MSOs in NorAm • analyzing 50% of US mobile data traffic, +2.5 PB/day • latency is critical for resolving operational issues before they cascade: 2.5 MM transactions per second • “analyze first” not “store first ask questions later” 44
  • 46. Demos, as time permits: brand new Python support for Streaming in 1.2 github.com/apache/spark/tree/master/examples/src/main/ python/streaming Twitter Streaming Language Classifier databricks.gitbooks.io/databricks-spark-reference-applications/ content/twitter_classifier/README.html ! ! For more Spark learning resources online: databricks.com/spark-training-resources 46
  • 47. Demo: PySpark Streaming Network Word Count import sys! from pyspark import SparkContext! from pyspark.streaming import StreamingContext! ! sc = SparkContext(appName="PyStreamNWC", master="local[*]")! ssc = StreamingContext(sc, Seconds(5))! ! lines = ssc.socketTextStream(sys.argv[1], int(sys.argv[2]))! ! counts = lines.flatMap(lambda line: line.split(" ")) ! .map(lambda word: (word, 1)) ! .reduceByKey(lambda a, b: a+b)! ! counts.pprint()! ! ssc.start()! ssc.awaitTermination() 47
  • 48. Demo: PySpark Streaming Network Word Count - Stateful import sys! from pyspark import SparkContext! from pyspark.streaming import StreamingContext! ! def updateFunc (new_values, last_sum):! return sum(new_values) + (last_sum or 0)! ! sc = SparkContext(appName="PyStreamNWC", master="local[*]")! ssc = StreamingContext(sc, Seconds(5))! ssc.checkpoint("checkpoint")! ! lines = ssc.socketTextStream(sys.argv[1], int(sys.argv[2]))! ! counts = lines.flatMap(lambda line: line.split(" ")) ! .map(lambda word: (word, 1)) ! .updateStateByKey(updateFunc) ! .transform(lambda x: x.sortByKey())! ! counts.pprint()! ! ssc.start()! ssc.awaitTermination() 48
  • 50. Spark Integrations: Discover Insights Clean Up Your Data Run Sophisticated Analytics Integrate With Many Other Systems Use Lots of Different Data Sources cloud-based notebooks… ETL… the Hadoop ecosystem… widespread use of PyData… advanced analytics in streaming… rich custom search… web apps for data APIs… low-latency + multi-tenancy… 50
  • 51. Spark Integrations: Advanced analytics for streaming use cases Kafka + Spark + Cassandra datastax.com/documentation/datastax_enterprise/4.5/ datastax_enterprise/spark/sparkIntro.html http://helenaedelson.com/?p=991 github.com/datastax/spark-cassandra-connector github.com/dibbhatt/kafka-spark-consumer unified compute data streams columnar key-value 51
  • 52. Spark Integrations: Rich search, immediate insights Spark + ElasticSearch databricks.com/blog/2014/06/27/application-spotlight-elasticsearch. html elasticsearch.org/guide/en/elasticsearch/hadoop/current/ spark.html spark-summit.org/2014/talk/streamlining-search-indexing- using-elastic-search-and-spark unified compute document search 52
  • 53. Spark Integrations: General Guidelines • use Tachyon as a best practice for sharing between two streaming apps • or write to Cassandra or HBase / then read back • design patterns for integration: spark.apache.org/docs/latest/streaming-programming- guide.html#output-operations- on-dstreams 53
  • 55. A Look Ahead… 1. Greater Stability and Robustness • improved high availability via write-ahead logs • enabled as an optional feature for Spark 1.2 • NB: Spark Standalone can already restart driver • excellent discussion of fault-tolerance (2012): cs.duke.edu/~kmoses/cps516/dstream.html • stay tuned: meetup.com/spark-users/events/218108702/ 55
  • 56. A Look Ahead… 2. Support for more environments, i.e., beyond Hadoop • three use cases currently depend on HDFS • those are being abstracted out • could then use Cassandra, etc. 56
  • 57. A Look Ahead… 3. Improved support for Python • e.g., Kafka is not exposed through Python yet (next release goal) 57
  • 58. A Look Ahead… 4. Better flow control • a somewhat longer-term goal, plus it is a hard problem in general • poses interesting challenges beyond what other streaming systems have faced 58
  • 60. A Big Picture… 19-20c. statistics emphasized defensibility in lieu of predictability, based on analytic variance and goodness-of-fit tests ! That approach inherently led toward a manner of computational thinking based on batch windows ! They missed a subtle point… 60
  • 61. A Big Picture… The view in the lens has changed 21c. shift towards modeling based on probabilistic approximations: trade bounded errors for greatly reduced resource costs highlyscalable.wordpress.com/2012/05/01/ probabilistic-structures-web-analytics-data- mining/ 61
  • 62. A Big Picture… The view in the lens has changed 21c. shift towards modeling based on probabil approximations: trade bounded errors for greatly reduced resource costs Twitter catch-phrase: “Hash, don’t sample” highlyscalable.wordpress.com/2012/05/01/ probabilistic-structures-web-analytics-data- mining/ 62
  • 63. Probabilistic Data Structures: a fascinating and relatively new area, pioneered by relatively few people – e.g., Philippe Flajolet provides approximation, with error bounds – in general uses significantly less resources (RAM, CPU, etc.) many algorithms can be constructed from combinations of read and write monoids aggregate different ranges by composing hashes, instead of repeating full-queries 63
  • 64. Probabilistic Data Structures: Some Examples algorithm use case example Count-Min Sketch frequency summaries code HyperLogLog set cardinality code Bloom Filter set membership MinHash set similarity DSQ streaming quantiles SkipList ordered sequence search 64
  • 65. Probabilistic Data Structures: Some Examples algorithm use case example Count-Min Sketch frequency summaries code HyperLogLog set cardinality code suggestion: consider these as your most quintessential collections data types at scale Bloom Filter set membership MinHash set similarity DSQ streaming quantiles SkipList ordered sequence search 65
  • 66. Add ALL the Things: Abstract Algebra Meets Analytics infoq.com/presentations/abstract-algebra-analytics Avi Bryant, Strange Loop (2013) • grouping doesn’t matter (associativity) • ordering doesn’t matter (commutativity) • zeros get ignored In other words, while partitioning data at scale is quite difficult, you can let the math allow your code to be flexible at scale Avi Bryant @avibryant Probabilistic Data Structures: Performance Bottlenecks 66
  • 67. Probabilistic Data Structures: Industry Drivers • sketch algorithms: trade bounded errors for orders of magnitude less required resources, e.g., fit more complex apps in memory • multicore + large memory spaces (off heap) are increasing the resources per node in a cluster • containers allow for finer-grain allocation of cluster resources and multi-tenancy • monoids, etc.: guarantees of associativity within the code allow for more effective distributed computing, e.g., partial aggregates • less resources must be spent sorting/windowing data prior to working with a data set • real-time apps, which don’t have the luxury of anticipating data partitions, can respond quickly 67
  • 68. Probabilistic Data Structures: Recommended Reading Probabilistic Data Structures for Web Analytics and Data Mining Ilya Katsov (2012-05-01) A collection of links for streaming algorithms and data structures Debasish Ghosh Aggregate Knowledge blog (now Neustar) Timon Karnezos, Matt Curcio, et al. Probabilistic Data Structures and Breaking Down Big Sequence Data C. Titus Brown, O'Reilly (2010-11-10) Algebird Avi Bryant, Oscar Boykin, et al. Twitter (2012) Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman, Cambridge (2011) 68
  • 70. cloud-based notebooks: databricks.com/blog/2014/07/14/databricks-cloud-making- big-data-easy.html youtube.com/watch?v=dJQ5lV5Tldw#t=883 70
  • 71. certification: Apache Spark developer certificate program • http://oreilly.com/go/sparkcert • defined by Spark experts @Databricks • assessed by O’Reilly Media • establishes the bar for Spark expertise 71
  • 72. Big Data Partnership • Postcode Anywhere: • Spark, Cassandra, Elasticsearch • And machine learning • Dynamically optimizing website UX • In house: • Spark, HBase, Elasticsearch • In a Lambda architecture • And data science • Social data mining for ad optimization • Training: • Introduction to Spark • Regular courses • Next: Dec 5th, Feb 6th • Databricks materials & certified trainers http://www.bigdatapartnership.com 72
  • 73. community: spark.apache.org/community.html video+slide archives: spark-summit.org events worldwide: goo.gl/2YqJZK resources: databricks.com/spark-training-resources workshops: databricks.com/spark-training Intro to Spark Spark AppDev Spark DevOps Spark DataSci Distributed ML on Spark Streaming Apps on Spark Spark + Cassandra 73
  • 74. books: Fast Data Processing with Spark Holden Karau Packt (2013) shop.oreilly.com/product/ 9781782167068.do Spark in Action Chris Fregly Manning (2015*) sparkinaction.com/ Learning Spark Holden Karau, Andy Konwinski, Matei Zaharia O’Reilly (2015*) shop.oreilly.com/product/ 0636920028512.do 74
  • 75. events: Big Data Spain Madrid, Nov 17-18 bigdataspain.org Strata EU Barcelona, Nov 19-21 strataconf.com/strataeu2014 Data Day Texas Austin, Jan 10 datadaytexas.com Strata CA San Jose, Feb 18-20 strataconf.com/strata2015 Spark Summit East NYC, Mar 18-19 spark-summit.org/east Strata EU London, May 5-7 strataconf.com/big-data-conference-uk-2015 Spark Summit 2015 SF, Jun 15-17 spark-summit.org 75
  • 76. presenter: monthly newsletter for updates, events, conf summaries, etc.: liber118.com/pxn/ Just Enough Math O’Reilly, 2014 justenoughmath.com preview: youtu.be/TQ58cWgdCpA Enterprise Data Workflows with Cascading O’Reilly, 2013 shop.oreilly.com/product/ 0636920028536.do 76