Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
First public meetup at Twitter Seattle, for Seattle DAML:
http://www.meetup.com/Seattle-DAML/events/159043422/
We compare/contrast several open source frameworks which have emerged for Machine Learning workflows, including KNIME, IPython Notebook and related Py libraries, Cascading, Cascalog, Scalding, Summingbird, Spark/MLbase, MBrace on .NET, etc. The analysis develops several points for "best of breed" and what features would be great to see across the board for many frameworks... leading up to a "scorecard" to help evaluate different alternatives. We also review the PMML standard for migrating predictive models, e.g., from SAS to Hadoop.