GE4230 Micromirror Project 2

533 views

Published on

Completion of the project

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
533
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
4
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

GE4230 Micromirror Project 2

  1. 1. MICROMIRROR DESIGN USING SANDIA SUMMIT TOOLS GE 4230: Design and Fabrication of MEMS Dr. Osama Jadaan University of Wisconsin – Platteville Jon Zickermann December 12, 2011Abstract: Structural and modal finite element analysis (FEA) simulations were ran on the micromirrorcreated in the previous project using ANSYS Workbench. The structural simulation determined thestresses and deformation of the mirror at 10° and if the mirror will fail at 5°. The modal analysisdetermined six resonant frequencies and corresponding modal shapes for each frequency.
  2. 2. 1TABLE OF CONTENTSObjective ....................................................................... 2Development ...................................................................... 2 Models ........................................................... 3 Mesh .................................................................... 3 Loads .................................................................... 4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
  3. 3. 2OBJECTIVE Although the Sandia SUMMiT V tools allowed for the creation of a MEMS device, there isno certainty how the device will behave when a load is applied. To avoid high costs in real -world testing, the 3d model generated in AutoCAD can be imported into ANSYS workbench andreal-world physics can be applied. For the torsional micromirror, a structural simulation wasneeded to determined the stresses and deformation of the mirror at 10° and if the mirror will fail at 5°.The modal analysis was needed to determine six resonant frequencies and corresponding modal shapesand deformation at each frequency.DEVELOPMENT The first step to creating the simulation was to create a mesh for the model. Originally,the imported model contained over 100,000 nodes, which was far too many for a simulationrequiring a simple load for a design that would not be used in production; t oo many nodes formodel only used to demonstrate the knowledge of using ANSYS Workbench. To reduce thenumber of nodes, mapped face shaping and body sizing operations were applied to cut down onthe number of nodes from to about 50,000. The body sizes were around 100 µm for thesubstrate and closer to 10 µm for more vital structures such as the supports for the spring.Since the spring was the main focus of the simulation, the spring only received mapped facemeshing. The next was to fix the connections automatically generated by Workbench. By default,there were too many connections between objects that never made contact, such as the Poly0layer to the spring. After, the contact tool was run and many connections were manually fixedsince the simulation considered the connections to lack contact even if the two bodies weretouching. This proved to fix problems with the simulation reporting errors with structures notinitial contact. Afterwards, the loads and supports were applied. For the static stru ctural analysis, thePoly 0 layer was used as the fixed support to simplify and reduce the time to solve. The loadwas determined to be a 0.36117µN*µN moment. A moment was chosen since using a forceresulted in the mirror bending downwards in both directions. The 0.36117µN*µN moment wasdetermined experimentally from 3 separate moments and their deformations and the equationdetermined from the linear regression in excel (see appendix fig 1). For the modal analysis, thespring supports were assumed to be a fixed load due to the rigid body motion that resulted withonly the substrate acting as a fixed support.
  4. 4. 33D MODEL:MESH:
  5. 5. 4STRESS IMAGES:
  6. 6. 5
  7. 7. 6DEFORMATION IMAGES:
  8. 8. 7MODAL DEFORMATION RESULTS:
  9. 9. 8
  10. 10. 9
  11. 11. 10RESULTSStatic Structural Results: Maximum Maximum Maximum Maximum Total Object Name Principal Stress Principal Stress 2 Principal Stress 3 Principal Stress 4 Deformation Scope Scoping Geometry Selection Method Geometry All Bodies 1 Body 2 Bodies All Bodies Results -1.5729e-003 -2.2717e-004 -1.5729e-003 -5.3634e-004 Minimum 0. µm MPa MPa MPa MPa 1.1628e-003 1.5247e-003 Maximum 6.277e-003 MPa 6.277e-003 MPa 19.164 µm MPa MPa Minimum Spring Part 6 Poly0 Occurs On Maximum Spring Part 6 Plate Occurs OnModal Results: Type Total Deformation Mode 1. 2. 3. 4. 5. Identifier Results Minimum 0. µm 1.3285e+005 1.4596e+005 2.0527e+005 2.1181e+005 2.1742e+005 Maximum µm µm µm µm µmMinimum Occurs Substrate OnMaximum Occurs Plate On Information Reported 2.7379e-004 3.7744e-004 5.2514e-004 5.624e-004 9.1669e-004 Frequency MHz MHz MHz MHz MHzDISCUSSION In the static structural tests, the maximum observed stresses were only 6Pa, far belowthe yield of any material used in MEMS if the mirror was deformed to 10 degrees. Therefore,the mirror should not fracture at 5 degrees under normal operation. Looking at the imagesfrom the moment tests, the mirror will not be able to work since the mirror does not benduniformly; the mirror looks like it twists rather than rotates. This is a result fromoversupporting the spring to the Poly1 layer below. Originally t here was a concern about thefirst design’s spring sagging without any loads, however the simulation could not be run in thedesign phase of the first project one due to lack of experience with ANSYS Workbench. If thisdesign was to be used in real life, the supports would have to be removed to allow the mirror torotate. In the modal analysis, each frequency had a unique shape following one of threepatterns: bending at the sides that were perpendicular to the supporting Poly1 layer structure ,bending at the corners and bending both at the sides and corners. The shapes of the
  12. 12. 11deformation became more extreme as the frequency increased, slowing turning from a simpledeformation similar to the static force where both sides deformed in the downward direction,to a complex deformation where all corners and both sides were deformed. In addition, theresonant frequencies occurred only at extremely high frequencies, where the lowest wasreported at 2.7GHz, far lower than any mechanical vibration in a typical envi ronment. Thiscould possibly be a result from the over-engineering done on the spring’s support structure.CONCLUSION The results from Workbench conformed to the primary concern of the design - wouldthe design be strong enough to withstand a load strong enough to bend the mirror 10 degrees?From the FEA simulation, the answer was yes. However, the design would not be practical sincethe mirror does not rotate – instead, it bends and twists. This would not allow the mirror toreflect the total amount of light emitted. Looking at the animations and images from thesimulation from both the structural and modal modes, the mirror was over-engineered from thefear of fracture. Therefore, the design needs to be re -considered with less support, requiringmore testing and redesigns before this mirror should be considered for production .APPENDIXFig 1: Moment Calculation:Distance for 10 degree angle:Moment calculation:Torque vs DeformationDeformation Moment 12 0.23 Torque vs Deformation 15.98 0.3 0.4 19 0.36 y = 0.0185x + 0.0056 Deformation (μm) 0.35 0.3Required Moment 0.25 19.22 0.36117 0.2 10 12 14 16 18 20 Moment (μN* μm)Fig 2: Preprocessing Data:Units
  13. 13. 12 TABLE 1 Unit System Metric (µm, kg, µN, s, V, mA) Degrees rad/s Celsius Angle Degrees Rotational Velocity rad/s Temperature CelsiusMirror (A4, B4)Geometry TABLE 2 Mirror (A4, B4) > Geometry Object Name Geometry State Fully Defined Definition Source J:GE423Micromirror3d63d6.sat Type ACIS Length Unit Micrometers Element Control Manual Display Style Part Color Bounding Box Length X 330. µm Length Y 252. µm Length Z 15.73 µm Properties Volume 4.0907e+005 µm³ Mass 9.5314e-010 kg Scale Factor Value 1. Statistics Bodies 20 Active Bodies 20 Nodes 63251 Elements 20598 Mesh Metric None Preferences Import Solid Bodies Yes Import Surface Bodies Yes Import Line Bodies No Parameter Processing Yes Personal Parameter Key DS CAD Attribute Transfer No Named Selection Processing No Material Properties Transfer No CAD Associativity Yes Import Coordinate Systems No Reader Save Part File No Import Using Instances Yes Do Smart Update No Attach File Via Temp File Yes Temporary Directory C:Documents and SettingsStudentApplication DataAnsysv121 Analysis Type 3-D Mixed Import Resolution None
  14. 14. 13Enclosure and Symmetry Processing Yes TABLE 3 Mirror (A4, B4) > Geometry > Parts Object Name Substrate Thermal Electrical State Meshed Graphics Properties Visible Yes Transparency 1 Definition Suppressed No Stiffness Behavior Flexible Brick Integration Scheme Full Coordinate System Default Coordinate System Reference Temperature By Environment Material Assignment Silicon Anisotropic Nonlinear Effects Yes Thermal Strain Effects Yes Bounding Box Length X 330. µm Length Y 252. µm Length Z 1. µm 0.63 µm 0.8 µm Properties Volume 83160 µm³ 52391 µm³ 66528 µm³ Mass 1.9376e-010 kg 1.2207e-010 kg 1.5501e-010 kg Centroid X 2212.2 µm Centroid Y 1511.1 µm Centroid Z 0.5 µm 1.315 µm 2.03 µm Moment of Inertia Ip1 1.0254e-006 kg·µm² 6.46e-007 kg·µm² 8.2032e-007 kg·µm² Moment of Inertia Ip2 1.7584e-006 kg·µm² 1.1078e-006 kg·µm² 1.4067e-006 kg·µm² Moment of Inertia Ip3 2.7838e-006 kg·µm² 1.7538e-006 kg·µm² 2.227e-006 kg·µm² Statistics Nodes 287 5888 Elements 32 800 Mesh Metric None TABLE 4 Mirror (A4, B4) > Geometry > Body Groups Object Name Part 4 Part 5 Part 6 Base State Meshed Graphics Properties Visible Yes Definition Suppressed No Assignment Silicon Anisotropic Coordinate System Default Coordinate System Bounding Box Length X 330. µm 310. µm 294. µm 310. µm Length Y 252. µm 232. µm 226. µm 232. µm Length Z 0.3 µm 3. µm 1.61 µm 3.5 µm
  15. 15. 14 Properties Volume 24947 µm³ 20793 µm³ 129.29 µm³ 29970 µm³ Mass 5.8127e-011 kg 4.8448e-011 kg 3.0124e-013 kg 6.9831e-011 kg Centroid X 0. µm 2335.5 µm 2212.2 µm Centroid Y 0. µm 1511.6 µm Centroid Z 0. µm 5.1149 µm 4.535 µm 6.4504 µmMoment of Inertia Ip1 0. kg·µm² 9.1465e-008 kg·µm² 2.2198e-009 kg·µm² 2.6271e-007 kg·µm²Moment of Inertia Ip2 0. kg·µm² 1.393e-008 kg·µm² 5.3446e-009 kg·µm² 1.1088e-006 kg·µm²Moment of Inertia Ip3 0. kg·µm² 1.0538e-007 kg·µm² 7.5643e-009 kg·µm² 1.3715e-006 kg·µm² Statistics Nodes 12071 5533 2784 4118 Elements 1664 2471 272 1918 Mesh Metric None TABLE 5 Mirror (A4, B4) > Geometry > Part 4 > Parts Object Name Poly0 State Meshed Graphics Properties Visible Yes Transparency 1 Definition Suppressed No Stiffness Behavior Flexible Brick Integration Scheme Full Coordinate System Default Coordinate System Reference Temperature By Environment Material Assignment Silicon Anisotropic Nonlinear Effects Yes Thermal Strain Effects Yes Bounding Box Length X 330. µm Length Y 252. µm Length Z 0.3 µm Properties Volume 24947 µm³ Mass 5.8127e-011 kg Centroid X 2212.2 µm Centroid Y 1511.1 µm Centroid Z 2.58 µm Moment of Inertia Ip1 3.076e-007 kg·µm² Moment of Inertia Ip2 5.2749e-007 kg·µm² Moment of Inertia Ip3 8.3509e-007 kg·µm² Statistics Nodes 12071 Elements 1664 Mesh Metric None TABLE 6 Mirror (A4, B4) > Geometry > Part 5 > Parts
  16. 16. 15 Object Name Part 5 Part 6 State Fully Defined Graphics Properties Visible Yes Transparency 1 Definition Suppressed No Stiffness Behavior Flexible Brick Integration Scheme Full Coordinate System Default Coordinate System Reference Temperature By Environment Material Assignment Silicon Anisotropic Nonlinear Effects Yes Thermal Strain Effects Yes Bounding Box Length X 110. µm Length Y 232. µm Length Z 3. µm Properties Volume 10397 µm³ Mass 2.4224e-011 kg Centroid X 2088.9 µm 2335.5 µm Centroid Y 1511.6 µm Centroid Z 5.1149 µm Moment of Inertia Ip1 9.1268e-008 kg·µm² 9.1465e-008 kg·µm² Moment of Inertia Ip2 1.393e-008 kg·µm² Moment of Inertia Ip3 1.0518e-007 kg·µm² 1.0538e-007 kg·µm² Statistics Nodes 2759 2774 Elements 1233 1238 Mesh Metric None TABLE 7 Mirror (A4, B4) > Geometry > Part 6 > Parts Object Name Part 7 Part 8 Part 9 Part 10 Part 11 State Fully Defined Graphics Properties Visible Yes Transparency 1 Definition Suppressed No Stiffness Behavior FlexibleBrick Integration Scheme Full Coordinate System Default Coordinate System Reference Temperature By Environment Material Assignment Silicon Anisotropic Nonlinear Effects Yes Thermal Strain Effects Yes
  17. 17. 16 Bounding Box Length X 19.859 µm 1.9998 µm 19.859 µm Length Y 1.9999 µm Length Z 1.61 µm Properties Volume 15.518 µm³ 2.5727 µm³ 15.518 µm³ Mass 3.6156e-014 kg 5.9944e-015 kg 3.6156e-014 kg Centroid X 2079.7 µm 2344.7 µm 2358.2 µm 2079.7 µm Centroid Y 1401.6 µm 1621.6 µm 1456.6 µm 1511.6 µm 1456.6 µm Centroid Z 4.535 µmMoment of Inertia Ip1 3.4886e-014 kg·µm² 4.4923e-015 kg·µm² 3.4886e-014 kg·µm²Moment of Inertia Ip2 1.3623e-012 kg·µm² 4.4934e-015 kg·µm² 1.3623e-012 kg·µm²Moment of Inertia Ip3 1.3816e-012 kg·µm² 6.3961e-015 kg·µm² 1.3816e-012 kg·µm² Statistics Nodes 324 96 324 Elements 32 8 32 Mesh Metric None TABLE 8 Mirror (A4, B4) > Geometry > Part 6 > Parts Object Name Part 12 Part 13 Part 14 Part 15 Part 16 State Fully Defined Graphics Properties Visible Yes Transparency 1 Definition Suppressed No Stiffness Behavior FlexibleBrick Integration Scheme Full Coordinate System Default Coordinate System Reference Temperature By Environment Material Assignment Silicon Anisotropic Nonlinear Effects Yes Thermal Strain Effects Yes Bounding Box Length X 19.859 µm 1.9998 µm 19.859 µm Length Y 1.9999 µm Length Z 1.61 µm Properties Volume 15.518 µm³ 2.5727 µm³ 15.518 µm³ Mass 3.6156e-014 kg 5.9944e-015 kg 3.6156e-014 kg Centroid X 2344.7 µm 2079.7 µm 2066.2 µm 2344.7 µm Centroid Y 1566.6 µm 1511.6 µm 1623.6 µm 1399.6 µm Centroid Z 4.535 µm Moment of Inertia Ip1 3.4886e-014 kg·µm² 4.4923e-015 kg·µm² 3.4886e-014 kg·µm² Moment of Inertia Ip2 1.3623e-012 kg·µm² 4.4929e-015 kg·µm² 1.3623e-012 kg·µm² Moment of Inertia Ip3 1.3816e-012 kg·µm² 6.3956e-015 kg·µm² 1.3816e-012 kg·µm² Statistics Nodes 324 96 324
  18. 18. 17 Elements 32 8 32Mesh Metric None TABLE 9 Mirror (A4, B4) > Geometry > Base > Parts Object Name Right Left State Fully Defined Graphics Properties Visible Yes Transparency 1 Definition Suppressed No Stiffness Behavior FlexibleBrick Integration Scheme Full Coordinate System Default Coordinate System Reference Temperature By Environment Material Assignment Silicon Anisotropic Nonlinear Effects Yes Thermal Strain Effects Yes Bounding Box Length X 110. µm Length Y 232. µm Length Z 3.5 µm Properties Volume 14985 µm³ Mass 3.4915e-011 kg Centroid X 2088.4 µm 2336.1 µm Centroid Y 1511.6 µm Centroid Z 6.4504 µm Moment of Inertia Ip1 1.3129e-007 kg·µm² 1.3142e-007 kg·µm² Moment of Inertia Ip2 1.897e-008 kg·µm² Moment of Inertia Ip3 1.5024e-007 kg·µm² 1.5037e-007 kg·µm² Statistics Nodes 2088 2030 Elements 979 939 Mesh Metric None TABLE 10 Mirror (A4, B4) > Geometry > Parts Object Name Spring Plate State Meshed Graphics Properties Visible Yes Transparency 1 Definition Suppressed No Stiffness Behavior FlexibleBrick Integration Scheme Full Coordinate System Default Coordinate System Reference Temperature By Environment
  19. 19. 18 Material Assignment Silicon Anisotropic Nonlinear Effects Yes Thermal Strain Effects Yes Bounding Box Length X 300. µm 216. µm Length Y 60. µm 218. µm Length Z 4.25 µm Properties Volume 28294 µm³ 1.0286e+005 µm³ Mass 6.5925e-011 kg 2.3966e-010 kg Centroid X 2212.2 µm Centroid Y 1511.6 µm Centroid Z 10.299 µm 14.561 µm Moment of Inertia Ip1 2.0043e-008 kg·µm² 9.4902e-007 kg·µm² Moment of Inertia Ip2 2.6827e-007 kg·µm² 9.0172e-007 kg·µm² Moment of Inertia Ip3 2.8824e-007 kg·µm² 1.8505e-006 kg·µm² Statistics Nodes 13590 13092 Elements 6602 6039 Mesh Metric NoneCoordinate Systems TABLE 11 Mirror (A4, B4) > Coordinate Systems > Coordinate System Object Name Global Coordinate System State Fully Defined Definition Type Cartesian Ansys System Number 0. Origin Origin X 0. µm Origin Y 0. µm Origin Z 0. µm Directional Vectors X Axis Data [ 1. 0. 0. ] Y Axis Data [ 0. 1. 0. ] Z Axis Data [ 0. 0. 1. ]Connections TABLE 12 Mirror (A4, B4) > Connections Object Name Connections State Fully Defined Auto Detection Generate Contact Yes On Update Tolerance Type Slider Tolerance Slider 0. Tolerance Value 1.0388 µm Face/Face Yes
  20. 20. 19 Face/Edge No Edge/Edge No Priority Include All Group By Bodies Search Across Bodies Revolute Joints Yes Fixed Joints Yes Transparency Enabled Yes Analysis Data Management Solver Files C:Documents and Directory SettingsStudentDesktopwbwb_filesdp0globalMECHSYSContact Tool TABLE 13 Mirror (A4, B4) > Connections > Contact Regions Bonded - Bonded - Bonded - Thermal Bonded - Part 5 Bonded - Part 5Object Name Substrate To Electrical To To Electrical To Part 11 To Part 13 Thermal Poly0 State Fully Defined Scope Scoping Geometry Selection Method Contact 1 Face 5 Faces Target 1 Face 5 Faces Contact Substrate Thermal Electrical Part 5 Bodies Target Thermal Electrical Poly0 Part 11 Part 13 Bodies Definition Type BondedScope Mode Automatic Behavior Symmetric Suppressed No Advanced Formulation Pure Penalty Normal Program Controlled Stiffness Update Never Stiffness Pinball Program Controlled Region TABLE 14 Mirror (A4, B4) > Connections > Contact Regions Bonded - Part 5 Bonded - Part 6 Bonded - Part 6 Bonded - Part 6 Bonded - Part 7Object Name To Right To Part 12 To Part 15 To Part 16 To Right State Fully Defined Scope Scoping Geometry Selection Method Contact 26 Faces 5 Faces Target 46 Faces 5 Faces
  21. 21. 20 Contact Part 5 Part 6 Part 7 BodiesTarget Bodies Right Part 12 Part 15 Part 16 Right Definition Type Bonded Scope Mode Automatic Behavior Symmetric Suppressed No Advanced Formulation Pure Penalty Normal Program Controlled Stiffness Update Never Stiffness Pinball Program Controlled Region TABLE 15 Mirror (A4, B4) > Connections > Contact Regions Bonded - Part 8 Bonded - Part 9 Bonded - Part Bonded - Part 11 Bonded - Part Object Name To Right To Left 10 To Left To Right 12 To Left State Fully Defined Scope Scoping Geometry Selection Method Contact 5 Faces Target 5 Faces Contact Part 8 Part 9 Part 10 Part 11 Part 12 BodiesTarget Bodies Right Left Right Left Definition Type Bonded Scope Mode Automatic Behavior Symmetric Suppressed No Advanced Formulation Pure Penalty Normal Program Controlled Stiffness Update Never Stiffness Pinball Program Controlled Region TABLE 16 Mirror (A4, B4) > Connections > Contact Regions Bonded - Part 13 Bonded - Part 14 Bonded - Part Bonded - Part Bonded - Right Object Name To Right To Right 15 To Left 16 To Left To Spring State Fully Defined Scope Scoping Geometry Selection Method
  22. 22. 21 Contact 5 Faces 1 Face Target 5 Faces 3 Faces Contact Part 13 Part 14 Part 15 Part 16 Right BodiesTarget Bodies Right Left Spring Definition Type Bonded Scope Mode Automatic Behavior Symmetric Suppressed No Advanced Formulation Pure Penalty Normal Program Controlled Stiffness Update Never Stiffness Pinball Program Controlled Region TABLE 17 Mirror (A4, B4) > Connections > Contact Regions Bonded - Left Bonded - Spring Bonded - Part 5 Bonded - Part 6 Bonded - Part 7Object Name To Spring To Plate To Poly0 To Poly0 To Part 5 State Fully Defined Scope Scoping Geometry Selection Method Contact 1 Face 7 Faces 4 Faces Target 3 Faces 1 Face 5 Faces Contact Left Spring Part 5 Part 6 Part 7 BodiesTarget Bodies Spring Plate Poly0 Part 5 Definition Type Bonded Scope Mode Automatic Manual Behavior Symmetric Suppressed No Advanced Formulation Pure Penalty Normal Program Controlled Stiffness Update Never Stiffness Pinball Program Controlled Region TABLE 18 Mirror (A4, B4) > Connections > Contact Regions Bonded - Part 14 To Bonded - Part 5 To Bonded - Left To Bonded - Left To Object Name Part 5 Part 8 Multiple Part 6 State Fully Defined Scope
  23. 23. 22 Scoping Geometry Selection Method Contact 4 Faces 12 Faces 1 Face Target 4 Faces 12 Faces 1 FaceContact Bodies Part 14 Part 5 Left Target Bodies Part 5 Part 8 Multiple Part 6 Definition Type Bonded Scope Mode Manual Behavior Symmetric Suppressed No Advanced Formulation Pure Penalty Normal Program Controlled Stiffness Update Never StiffnessPinball Region Program Controlled TABLE 19 Mirror (A4, B4) > Connections > Contact Tools Object Name Contact Tool State Solved Scope Scoping Method Worksheet Mirror (A4, B4) > Connections > Contact Tool Name Contact Side Bonded - Substrate To Thermal Both Bonded - Thermal To Electrical Both Bonded - Electrical To Poly0 Both Bonded - Part 5 To Part 11 Both Bonded - Part 5 To Part 13 Both Bonded - Part 5 To Right Both Bonded - Part 6 To Part 12 Both Bonded - Part 6 To Part 15 Both Bonded - Part 6 To Part 16 Both Bonded - Part 7 To Right Both Bonded - Part 8 To Right Both Bonded - Part 9 To Left Both Bonded - Part 10 To Left Both Bonded - Part 11 To Right Both Bonded - Part 12 To Left Both Bonded - Part 13 To Right Both Bonded - Part 14 To Right Both Bonded - Part 15 To Left Both Bonded - Part 16 To Left Both Bonded - Right To Spring Both Bonded - Left To Spring Both Bonded - Spring To Plate Both Bonded - Part 5 To Poly0 Both
  24. 24. 23 Bonded - Part 6 To Poly0 Both TABLE 20 Mirror (A4, B4) > Connections > Contact Tool > Contact Data Tables Object Name Initial Information State Solved Mirror (A4, B4) > Connections > Contact Tool > Initial Information Number Gap Geometric Geometri Resultin Real Contac Penetratio Name Type Status Contactin (µm Penetratio c Gap g Pinball Constan t Side n (µm) g ) n (µm) (µm) (µm) tBonded - Contac Bonde Close 2.2204e- 2.2204e-Substrat 32. 0. 0. 3.7529 21. t d d 016 016 e ToThermalBonded - Bonde Close 2.2204e- 2.2204e-Substrat Target 800. 0. 0. 0.7604 22. d d 016 016 e ToThermalBonded -Thermal Contac Bonde Close 4.4409e- 4.4409e- 800. 0. 0. 0.76912 23. To t d d 016 016Electrica lBonded -Thermal Bonde Close 4.4409e- 4.4409e- Target 800. 0. 0. 0.7604 24. To d d 016 016Electrica lBonded - Contac Bonde Close 4.4409e- 8.8818e-Electrica 800. 0. 0. 0.76912 25. t d d 016 016 l To Poly0Bonded - Bonde Close 1.3323e- 8.8818e-Electrica Target 1664. 0. 0. 0.49999 26. d d 015 016 l To Poly0Bonded- Part 5 Contac Bonde Close 6.8212e- 9.0949e- 20. 0. 0. 0.31581 27.To Part t d d 013 013 11Bonded- Part 5 Bonde Close 4.5475e- 2.2737e- Target 60. 0. 0. 0.26989 28.To Part d d 013 013 11Bonded- Part 5 Contac Bonde Close 4.5475e- 4.5475e- 20. 0. 0. 0.31581 29.To Part t d d 013 013 13Bonded Target Bonde Close 60. 0. 0. 4.5475e- 4.5475e- 0.26989 30.
  25. 25. 24 - Part 5 d d 013 013 To Part 13 Bonded Contac Bonde Close 2.2737e- - Part 5 342. 0. 0.325 0.2251 0.68128 31. t d d 013To Right Bonded Bonde Close 2.2737e- - Part 5 Target 266. 0. 0.33066 0.2251 1.0985 32. d d 013To Right Bonded - Part 6 Contac Bonde Close 9.0949e- 4.5475e- 20. 0. 0. 0.31803 33. To Part t d d 013 013 12 Bonded - Part 6 Bonde Close 2.2737e- 9.0949e- Target 60. 0. 0. 0.26989 34. To Part d d 013 013 12 Bonded - Part 6 Contac Bonde Close 9.0949e- 4.5475e- 20. 0. 0. 0.31774 35. To Part t d d 013 013 15 Bonded - Part 6 Bonde Close 4.5475e- 4.5475e- Target 60. 0. 0. 0.26989 36. To Part d d 013 013 15 Bonded - Part 6 Contac Bonde Close 9.0949e- 9.0949e- 20. 0. 0. 0.31774 37. To Part t d d 013 013 16 Bonded - Part 6 Bonde Close 4.5475e- 9.0949e- Target 60. 0. 0. 0.26989 38. To Part d d 013 013 16 Bonded Contac Bonde Close 4.5475e- 2.2737e- - Part 7 52. 0. 0. 0.30566 39. t d d 013 013To Right Bonded Bonde Close 4.5475e- 4.5475e- - Part 7 Target 16. 0. 0. 1.4671 40. d d 013 013To Right Bonded Contac Bonde Close 4.5475e- 2.2737e- - Part 8 52. 0. 0. 0.29754 41. t d d 013 013To Right Bonded Bonde Close 4.5475e- 4.5475e- - Part 8 Target 16. 0. 0. 1.2457 42. d d 013 013To Right Bonded Contac Bonde Close 2.2737e- 4.5475e- - Part 9 52. 0. 0. 0.30566 43. t d d 013 013 To Left Bonded Bonde Close 9.0949e- 9.0949e- - Part 9 Target 16. 0. 0. 1.8976 44. d d 013 013 To Left Bonded Contac Bonde Close 4.5475e- 9.0949e- 16. 0. 0. 0.25178 45.- Part 10 t d d 013 013
  26. 26. 25 To Left Bonded Bonde Close 9.0949e- 4.5475e-- Part 10 Target 36. 0. 0. 0.16123 46. d d 013 013 To Left Bonded Contac Bonde Close 4.5475e- 4.5475e-- Part 11 52. 0. 0. 0.30566 47. t d d 013 013To Right Bonded Bonde Close 9.0949e- 4.5475e-- Part 11 Target 16. 0. 0. 1.8932 48. d d 013 013To Right Bonded Contac Bonde Close 2.2737e- 4.5475e-- Part 12 52. 0. 0. 0.29754 49. t d d 013 013 To Left Bonded Bonde Close 9.0949e- 9.0949e-- Part 12 Target 16. 0. 0. 1.6997 50. d d 013 013 To Left Bonded Contac Bonde Close 4.5475e- 4.5475e-- Part 13 52. 0. 0. 0.30566 51. t d d 013 013To Right Bonded Bonde Close 9.0949e- 9.0949e-- Part 13 Target 16. 0. 0. 1.9022 52. d d 013 013To Right Bonded Contac Bonde Close 4.5475e- 4.5475e-- Part 14 16. 0. 0. 0.25178 53. t d d 013 013To Right Bonded Bonde Close 9.0949e- 4.5475e-- Part 14 Target 36. 0. 0. 0.17247 54. d d 013 013To Right Bonded Contac Bonde Close 2.2737e- 4.5475e-- Part 15 52. 0. 0. 0.30566 55. t d d 013 013 To Left Bonded Bonde Close 1.3642e- 4.5475e-- Part 15 Target 16. 0. 0. 1.7209 56. d d 012 013 To Left Bonded Contac Bonde Close 4.5475e- 4.5475e-- Part 16 52. 0. 0. 0.29754 57. t d d 013 013 To Left Bonded Bonde Close 9.0949e- 4.5475e-- Part 16 Target 16. 0. 0. 1.8058 58. d d 013 013 To Left Bonded - Right Contac Bonde Close 8.8818e- 1.7764e- 6. 0. 0. 1.2151 59. To t d d 016 015 Spring Bonded - Right Bonde Close 1.7764e- 8.8818e- Target 98. 0. 0. 0.28404 60. To d d 015 016 Spring Bonded Contac Bonde Close 8.8818e-- Left To 6. 0. 0. 0. 1.2295 61. t d d 016 Spring Bonded Bonde Close 8.8818e- 8.8818e- Target 98. 0. 0. 0.27719 62.- Left To d d 016 016
  27. 27. 26 SpringBonded Contac Bonde Close 5.3291e- 1.7764e-- Spring 189. 0. 0. 0.5566 63. t d d 015 015To PlateBonded Bonde Close 1.7764e- 7.1054e-- Spring Target 224. 0. 0. 0.48926 64. d d 015 015To PlateBonded Contac Bonde Close 4.4409e- 1.3323e- - Part 5 50. 0. 0. 0.42916 65. t d d 016 015To Poly0Bonded Bonde Close 4.4409e- 8.8818e- - Part 5 Target 28. 0. 0. 0.49999 66. d d 016 016To Poly0Bonded Contac Bonde Close 8.8818e- 1.3323e- - Part 6 50. 0. 0. 0.42916 67. t d d 016 015To Poly0Bonded Bonde Close 8.8818e- - Part 6 Target 28. 0. 0. 0. 0.49999 68. d d 016To Poly0Mesh TABLE 21 Mirror (A4, B4) > Mesh Object Name Mesh State Solved Defaults Physics Preference Mechanical Relevance 0 Sizing Use Advanced Size Function Off Relevance Center Medium Element Size Default Initial Size Seed Active Assembly Smoothing High Transition Fast Span Angle Center Fine Minimum Edge Length 0.30 µm Inflation Use Automatic Tet Inflation None Inflation Option Smooth Transition Transition Ratio 0.272 Maximum Layers 5 Growth Rate 1.2 Inflation Algorithm Pre View Advanced Options No Advanced Shape Checking Standard Mechanical Element Midside Nodes Program Controlled Straight Sided Elements No Number of Retries Default (4) Rigid Body Behavior Dimensionally Reduced
  28. 28. 27 Mesh Morphing Disabled Pinch Pinch Tolerance Please Define Generate on Refresh No Statistics Nodes 63251 Elements 20598 Mesh Metric None TABLE 22 Mirror (A4, B4) > Mesh > Mesh Controls Object Name Mapped Face Meshing Body Sizing Body Sizing 2 Body Sizing 3 State Ignored Fully Defined Scope Scoping Method Geometry Selection Geometry Selection Geometry 6 Faces 1 Body 4 Bodies 1 Body Definition Suppressed No No Constrain Boundary No Type Element Size Element Size 100. µm 50. µm 10. µm Behavior Soft Advanced Specified Sides None Specified Corners None Specified Ends None FIGURE 1 Mirror (A4, B4) > Mesh > ImageStatic Structural (A5) TABLE 23 Mirror (A4, B4) > Analysis Object Name Static Structural (A5) State Solved Definition Physics Type Structural Analysis Type Static Structural Solver Target ANSYS Mechanical Options Environment Temperature 22. °C Generate Input Only No TABLE 24 Mirror (A4, B4) > Static Structural (A5) > Analysis Settings Object Name Analysis Settings State Fully Defined Step Controls Number Of Steps 1. Current Step Number 1. Step End Time 1. s Auto Time Stepping Program Controlled Solver Controls
  29. 29. 28 Solver Type Program Controlled Weak Springs Off Large Deflection Off Inertia Relief Off Nonlinear Controls Force Convergence Program Controlled Moment Convergence Program Controlled Displacement Convergence Program Controlled Rotation Convergence Program Controlled Line Search Program Controlled Output Controls Calculate Stress Yes Calculate Strain Yes Calculate Contact No Calculate Results At All Time Points Analysis Data Management Solver Files Directory C:Documents and SettingsStudentDesktopwbwb_filesdp0SYSMECH Future Analysis Prestressed analysisScratch Solver Files Directory Save ANSYS db Yes Delete Unneeded Files Yes Nonlinear Solution No Solver Units Active System Solver Unit System µmks TABLE 25 Mirror (A4, B4) > Static Structural (A5) > Loads Object Name Moment Fixed Support 4 State Fully Defined Scope Scoping Method Geometry Selection Geometry 1 Face Definition Type Moment Fixed Support Define By Components Coordinate System Global Coordinate System X Component -0.36117 µN·µm (ramped) Y Component 0. µN·µm (ramped) Z Component 0. µN·µm (ramped) Suppressed No Behavior Deformable Advanced Pinball Region All

×