Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Respiración celularRespiración celular
Mientras que la FOTOSÍNTESIS provee los carbohidratos necesarios
para las plantas (...
Mitocondria
Sin las mitocondrias las células dependerían de
la glucólisis anaeróbica para formar ATP. Pero
este proceso so...
La membrana externa contiene una alta cantidad de una proteína llamada
porina, que forma grandes canales acuosos a través ...
*GLUCÓLISIS: ocurre en el citosol, donde cada molécula de glucosa, con sus
6 átomos de carbono, se oxida parcialmente dand...
Glucólisis
La mitocondria utiliza como combustibles mayoritarios el piruvato y los ác.
grasos producidos en el citoplasma ...
También es hidrolizado el glucógeno en moléculas más pequeñas (glucosa
1-fosfato) sustrato de la glucólisis.
Los ácidos gr...
Ciclo de Krebs
Ocurre en la matriz mitocondrial.
Resultado: CO2 y electrones ricos en
energía, que pasan vía NADH y FADH2
...
Cadena de transporte de electrones
Ocurre en la membrana
interna de la mitocondria.
Fosforilación oxidativa
Cuando los ele...
Esta enzima
impulsa la
conversión del
ADP+Pi en ATP
Respiracion celular
Respiracion celular
Respiracion celular
Upcoming SlideShare
Loading in …5
×

Respiracion celular

El proceso por el cual las células degradan las moléculas de alimento para obtener energía recibe el nombre de RESPIRACIÓN CELULAR.

La respiración celular es una reacción exergónica, donde parte de la energía contenida en las moléculas de alimento es utilizada por la célula para sintetizar ATP. Decimos parte de la energía porque no toda es utilizada, sino que una parte se pierde.

Aproximadamente el 40% de la energía libre emitida por la oxidación de la glucosa se conserva en forma de ATP. Cerca del 75% de la energía de la nafta se pierde como calor de un auto; solo el 25% se convierte en formas útiles de energía. La célula es mucho más eficiente.
La respiración celular es una combustión biológica y puede compararse con la combustión de carbón, bencina, leña. En ambos casos moléculas ricas en energía son degradadas a moléculas más sencillas con la consiguiente liberación de energía.

Tanto la respiración como la combustión son reacciones exergónicas.

Sin embargo existen importantes diferencias entre ambos procesos. En primer lugar la combustión es un fenómeno incontrolado en el que todos los enlaces químicos se rompen al mismo tiempo y liberan la energía en forma súbita; por el contrarío la respiración es la degradación del alimento con la liberación paulatina de energía. Este control está ejercido por enzimas específicas.

Related Books

Free with a 30 day trial from Scribd

See all
  • Be the first to comment

Respiracion celular

  1. 1. Respiración celularRespiración celular Mientras que la FOTOSÍNTESIS provee los carbohidratos necesarios para las plantas (y los organismos de las cadenas alimenticias siguientes), la GLUCÓLISIS y la RESPIRACIÓN CELULAR son los procesos por los cuales la energía contenida en los carbohidratos es liberada de manera controlada. Durante la respiración la energía que se libera es incorporada en la molécula de ATP, que puede ser inmediatamente reutilizado en el mantenimiento y desarrollo del organismo. Desde el punto de vista químico, la respiración se expresa como la oxidación de la gucosa: C6 H12 O6   +  6 O2   +6 H2 0  --> 6 CO2   +  12 H2 O Conversión energética Mitocondrias Cloroplastos Convertir la energía de la luz o de los alimentos en energía utilizable para procesos internos. Walter Franco Secretario Academico del FRIM fher151@hotmail.com
  2. 2. Mitocondria Sin las mitocondrias las células dependerían de la glucólisis anaeróbica para formar ATP. Pero este proceso solo es capaz de liberar una pequeña cantidad de la energía disponible en la glucosa. En las mitocondrias el metabolismo de los azúcares está integrado: el piruvato (glucóilisis) es importado dentro de la mitocondria y oxidado por el O2 a CO2 y H2O. La energía liberada es almacenada de una manera tan eficiente que por cada glucosa oxidada se producen aprox. 30 ATP. Cada mitocondria esta limitada por dos membranas muy especializadas. Definen dos compartimientos: Matriz y el espacio intermembranoso.
  3. 3. La membrana externa contiene una alta cantidad de una proteína llamada porina, que forma grandes canales acuosos a través de la bicapa. Tamiz permeable!. Mientras que la membrana interna es impermeable. Forma numerosas crestas, que aumentan su superficie total. Contiene tres tipos de proteínas: a) Realizan reacciones de oxidación en la cadena respiratoria. b) Complejo ATP sintasa. c) Proteínas de transporte.
  4. 4. *GLUCÓLISIS: ocurre en el citosol, donde cada molécula de glucosa, con sus 6 átomos de carbono, se oxida parcialmente dando lugar a dos moléculas de piruvato (de 3 átomos de carbono). Se invierten dos ATP pero se generan cuatro. *RESPIRACIÓN CELULAR: cuando el ambiente es aerobio (contiene O2 ) el piruvato se oxida totalmente a dióxido de Carbono (CO2 ), liberando la energía almacenada en los enlaces piruvato y atrapándola en el ATP. Se subdivide en etapas: Ciclo de los ác. tricarboxílicos (o del ác. Cítrico ó ciclo de Krebs): ocurre en la matriz de la mitocondria. Cadena respiratoria: se lleva a cabo en las membranas mitocondriales. *FERMENTACIÓN: cuando el O2 está ausente (ambiente anaerobio), el piruvato no produce CO2, sino que se forman otras moléculas como el ác. láctico o el etanol. Siendo el balance neto de ATP mucho menor!.
  5. 5. Glucólisis La mitocondria utiliza como combustibles mayoritarios el piruvato y los ác. grasos producidos en el citoplasma a través de la glucólisis. Estas moléculas son transportadas selectivamente hacia el matriz mitocondrial. Las células animales almacenan los hidratos de carbono en forma de glucógeno y los ácidos grasos en forma de grasas. La oxidación de las grasas libera mucha más energía (más de 6 veces) que la del glucógeno. Una persona adulta almacena una cantidad de glucógeno suficiente para un solo día de actividad normal, pero almacena una cantidad de grasa suficiente para un mes de actividad normal. Tejido adiposo. Cuando es necesario energía la célula comienza con los procesos de degradación de estas moléculas.
  6. 6. También es hidrolizado el glucógeno en moléculas más pequeñas (glucosa 1-fosfato) sustrato de la glucólisis. Los ácidos grasos a través de procesos de oxido-reducción también se rompen en moléculas pequeñas aprovechables. Las reacciones de glucólisis convierten a las moléculas de glucosa (6 átomos de carbono) en dos moléculas de piruvato, de tres átomos de carbono, las cuales aún contienen la mayor parte de la energía que se puede obtener de la oxidación de los azúcares.
  7. 7. Ciclo de Krebs Ocurre en la matriz mitocondrial. Resultado: CO2 y electrones ricos en energía, que pasan vía NADH y FADH2 a la cadena respiratoria. El CO2 se elimina como producto de deshecho, mientras que los electrones de alta energía se desplazan por la cadena respiratoria y finalmente se combinan con O2 y forman H2O.
  8. 8. Cadena de transporte de electrones Ocurre en la membrana interna de la mitocondria. Fosforilación oxidativa Cuando los electrones de alta energía de los hidrógenos del NADH y del FADH2 son transferidos a lo largo de la cadena respiratoria de la membrana mitocondrial interna, la energía que se libera cada vez que pasan de una molécula transportadora a otra, es utilizada para bombear protones (H+) a través de la membrana interna desde la matriz al espacio intermembrana. Esto genera un gradiente electroquímico de protones a través de la membrana mitocondrial interna, y el flujo de H+ a favor de gradiente es utilizado, mediante una enzima ligada a la membrana: ATP sintasa.
  9. 9. Esta enzima impulsa la conversión del ADP+Pi en ATP

    Be the first to comment

    Login to see the comments

  • AdaJara

    Mar. 30, 2017
  • TireneOrama

    May. 9, 2017
  • KarolaySaborio

    Jun. 18, 2017
  • SalvadorAucapanBustamanteV

    Dec. 2, 2017
  • EdwinMinaya

    Nov. 13, 2018
  • MayraVsquez3

    Jan. 10, 2019

El proceso por el cual las células degradan las moléculas de alimento para obtener energía recibe el nombre de RESPIRACIÓN CELULAR. La respiración celular es una reacción exergónica, donde parte de la energía contenida en las moléculas de alimento es utilizada por la célula para sintetizar ATP. Decimos parte de la energía porque no toda es utilizada, sino que una parte se pierde. Aproximadamente el 40% de la energía libre emitida por la oxidación de la glucosa se conserva en forma de ATP. Cerca del 75% de la energía de la nafta se pierde como calor de un auto; solo el 25% se convierte en formas útiles de energía. La célula es mucho más eficiente. La respiración celular es una combustión biológica y puede compararse con la combustión de carbón, bencina, leña. En ambos casos moléculas ricas en energía son degradadas a moléculas más sencillas con la consiguiente liberación de energía. Tanto la respiración como la combustión son reacciones exergónicas. Sin embargo existen importantes diferencias entre ambos procesos. En primer lugar la combustión es un fenómeno incontrolado en el que todos los enlaces químicos se rompen al mismo tiempo y liberan la energía en forma súbita; por el contrarío la respiración es la degradación del alimento con la liberación paulatina de energía. Este control está ejercido por enzimas específicas.

Views

Total views

512

On Slideshare

0

From embeds

0

Number of embeds

1

Actions

Downloads

2

Shares

0

Comments

0

Likes

6

×