“Translational Biomedical Informatics 2010: Infrastructure and Scaling”Brian  Athey and the NCIBI and CTSA Teamsbleu@mich....
Vision of  Biomedicine as an Information Science: Key Components<br /><ul><li> An avalanche of genomic information:  valid...
 Powerful computational methods
 Effective linkages with better environmental, dietary, and behavioral datasets for eco-genetic analyses
 Credible privacy and confidentiality protections in research and clinical care
 Breakthrough tests, vaccines, drugs, behaviors, and regulatory actions to reduce health risks and cost-effectively treat ...
Integrating High-Throughput Measurements with the Phenotype is Key<br />
Disease Specific View: Prostate Cancer ProgressionIntegration Strategy<br />Chris Maher, Jim Cavalcoli, and Gil Omenn<br />
Models we Must Consider<br />(with IT Implications elaborated upon)<br />Eric E. Schadt  “Molecular networks as sensors an...
Bill Stead, IOM 2007<br />
Bill Stead’s Proposed Solution to Enable Decision Support<br />Bill Stead, IOM 2007<br />
Scope of Applications in CTSA InformaticsWe must focus on the elements in Red<br />**Interoperability with Institutional E...
Motivation: Data Aggregation, Integration, Analysis, and Visualization as a Creativity and Productivity Engine<br />
UMHS Clinical Research Enterprise Landscape—Yours too!<br />Major Missing Piece—<br />Basic and Clinical Research Data Man...
  Temporality
  Distribution</li></ul>After P. Payne, OSUMC<br />
Supporting Personalized Healthcare is Beyond Just an EHR: Translational Biomedical Knowledge Creation<br /><ul><li> Biolog...
 Technologies
 Algorithms
 Gender
 Ethnicity
 Age
 Weight
 Diagnosis
 Medical History
 Literature
 Databases
Upcoming SlideShare
Loading in …5
×

Translational Biomedical Informatics 2010: Infrastructure and Scaling

1,834 views

Published on

Translational Biomedical Informatics 2010: Infrastructure and Scaling – Brian Athey,
PhD; Professor of Biomedical Informatics and Director for Academic Informatics,
University of Michigan Medical School; Chair Designate for Computational Medicine and Bioinformatics, University of Michigan; Associate Director, Michigan Institute for Clinical Health Research; Principal Investigator, National Center for Integrative Biomedical Informatics

Published in: Health & Medicine, Business
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,834
On SlideShare
0
From Embeds
0
Number of Embeds
44
Actions
Shares
0
Downloads
0
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

Translational Biomedical Informatics 2010: Infrastructure and Scaling

  1. 1. “Translational Biomedical Informatics 2010: Infrastructure and Scaling”Brian Athey and the NCIBI and CTSA Teamsbleu@mich.edu and NCIBI.org<br />Center for Computational Medicine and Bioinformatics <br />Michigan Institute for Clinical and Health Research<br />University of Michigan<br />
  2. 2. Vision of Biomedicine as an Information Science: Key Components<br /><ul><li> An avalanche of genomic information: validated SNPs, haplotype blocks, candidate genes/alleles, whole genome and exome, sequences, epignomic marks, proteins, & metabolites—to be associated with disease risks
  3. 3. Powerful computational methods
  4. 4. Effective linkages with better environmental, dietary, and behavioral datasets for eco-genetic analyses
  5. 5. Credible privacy and confidentiality protections in research and clinical care
  6. 6. Breakthrough tests, vaccines, drugs, behaviors, and regulatory actions to reduce health risks and cost-effectively treat patients globally.</li></ul>Omenn and Athey, 2010<br />
  7. 7. Integrating High-Throughput Measurements with the Phenotype is Key<br />
  8. 8. Disease Specific View: Prostate Cancer ProgressionIntegration Strategy<br />Chris Maher, Jim Cavalcoli, and Gil Omenn<br />
  9. 9. Models we Must Consider<br />(with IT Implications elaborated upon)<br />Eric E. Schadt “Molecular networks as sensors and drivers of common human diseases”. (2009). Nature 461, 218-223. doi:10.1038/nature08454<br />
  10. 10. Bill Stead, IOM 2007<br />
  11. 11. Bill Stead’s Proposed Solution to Enable Decision Support<br />Bill Stead, IOM 2007<br />
  12. 12.
  13. 13. Scope of Applications in CTSA InformaticsWe must focus on the elements in Red<br />**Interoperability with Institutional EHR Systems<br />Clinical transaction systems<br />Clinical Data Repository (CDR)<br />De-identification/Honest Brokering<br />Tools to Facilitate Extracting/Downloading Data Software tools<br />CTSI Portals, Research Networks, and Resource Directories<br />**Clinical Trial/Study Databases<br />**Genomic, Proteomic, and Metabolomic High-Throughput Data Repositories and Analysis Tools<br />Clinical Imaging Data Repositories and Analysis Tools<br />**An Institutional Specimen Tracking System--Biorepository<br />A CTSA Core Lab LIMS (Laboratory Information Management System) <br />Population/Public Health Databases & Informatics Needs<br />**Standards to promote Interoperation within and between CTSA sites<br />Informatics Teaching & Training (Interface with CTSA Education Program)<br />Biomedical Informatics Research in Support of C&T Research<br />Faculty, Staff, and Administrative Structure for Biomedical Informatics<br />**Indicates MICHR/CTSA Priorities<br />CTSA Informatics Consortium Operations Committee<br />Bill Hersh (OSHU) and Brian Athey (UMICH), co-chairs. 2007<br />
  14. 14. Motivation: Data Aggregation, Integration, Analysis, and Visualization as a Creativity and Productivity Engine<br />
  15. 15. UMHS Clinical Research Enterprise Landscape—Yours too!<br />Major Missing Piece—<br />Basic and Clinical Research Data Management<br />Software to Support Analysis<br />Billing<br />Compliance<br />CCC CTMS<br />(e.g. RedCap)<br />EMR<br />(e.g. Epic)<br />Enterprise<br />Information<br />Warehouse<br />(Architecture)<br />Inpatient EMR &<br />Ancillary Systems<br />eIRB<br />(Click Commerce)<br />Critical Challenges:<br /><ul><li> Heterogeneity
  16. 16. Temporality
  17. 17. Distribution</li></ul>After P. Payne, OSUMC<br />
  18. 18. Supporting Personalized Healthcare is Beyond Just an EHR: Translational Biomedical Knowledge Creation<br /><ul><li> Biological Models
  19. 19. Technologies
  20. 20. Algorithms
  21. 21. Gender
  22. 22. Ethnicity
  23. 23. Age
  24. 24. Weight
  25. 25. Diagnosis
  26. 26. Medical History
  27. 27. Literature
  28. 28. Databases
  29. 29. Terminologies
  30. 30. Ontologies
  31. 31. Lab Tests
  32. 32. Genes
  33. 33. Proteins</li></ul>Integrated EHR<br />10/14/2010<br />After P. Payne, OSUMC<br />
  34. 34. Biomedical Informatics View of ITData Warehouse 101<br />13<br />Operational Management<br />(Historical. e.g. quality, billing, reporting etc.)<br />Patient Care<br />(Electronic Health Record)<br />Biomedical Research<br />External Organizations<br />External Organizations<br />Population Research<br />Multiple Clinical Systems<br />Trials<br />Research Warehouse<br />-De-Identification<br />-Consents<br />-Identity Management<br />-Vocabulary Mapping<br />Clinical Data Warehouse<br />Clinical Data Repository <br />Quality Reports<br />Comparative Effectiveness Research<br />Administration Systems<br />‘Omics Repository<br />
  35. 35. Data Warehouse 102<br />Syntax Alignment<br />Collection<br />Aggregation<br />Entity Alignment<br />Source Data<br />Clinical Data Repository<br />HSDW <br />Patient Data Aggregation<br />Operational Reporting systems<br />EMAR<br />EMR<br />Billing<br />Meds - Insulin<br />EMAR<br />Diagnosis – ICD9<br />Labs<br />Billing<br />Data Warehouse<br />Environment<br />Lab – A1C>9<br />Mapping/Pointers<br />Claims<br />Patient Diagnosis(part of the patient subject)<br />Labs<br />Ontologies, Coding, Integration<br />Velos<br />Integration<br />Domain Alignment (complete semantic and syntactic alignment)<br />
  36. 36. Architecture today<br />Privacy<br />Walls<br />Patient Care Systems<br />Biomedical Research<br />Reporting<br />IRB<br />HSDW<br />HIPAA<br />ICU Systems<br />Financial Reporting<br />Cohort Discovery<br />Registration/<br />ADT<br />OR Systems<br />Public Reporting<br />Patient Scheduling<br />Hospital EMR<br />Population Research<br />Quality Data Warehouse<br />(New)<br />Departmental Applications<br />Comparative Effectiveness Research<br />Abstraction<br />Transcription<br />Health Services Research<br />Clinical Data Repository (CDR)<br />CPT<br />Billing<br />ICD-9<br />Non-Cancer Research<br />Claims<br />EMPI<br />CommonRule<br />Patient Health Record<br />Cancer Research<br />Genomic Research<br />Imaging<br />Ambulatory EMR<br />Patient Recruitment<br />Consent<br />Clinical Trial Management System<br />High Throughput ‘Omics LIS<br />Lab Systems<br />Tissue Bank<br />Clinical Reporting<br />Clinical Transactions<br />Research Activities<br />Research Transactions<br />Coding<br />Last Modified 5-14-2010<br />
  37. 37. High Level Conceptual Diagram—Future State<br />Research Interface with the Clinical Record<br />Common Specimen Identifier Services<br />Terminology mapping systems<br />Transactional Research Systems<br />Analytic Research Systems<br />Laboratory Research/ ‘Omics’<br />Clinical POC systems<br />Patient , Participant<br />& Provider <br />Facing<br />Systems<br />Epic<br />Legacy<br />Epic Systems<br />(Ambulatory Care, Emerg. Med, etc.)<br />CareLink/<br />Eclipsys<br />Ambulatory<br />Research <br />EDC Systems<br />Careweb, Carelink - Eclipsys, etc.<br />Research <br />AdministrationSystems<br />Research Adminis-trative<br /> Systems<br />Clinical Research Electronic Data Capture Systems<br />Next-Gen Sequencing<br />Laboratory and Shared Facility Data Capture<br />Disease-Specific <br />Disease & Site specific data marts<br />Emergency Med.<br />Patient & Participant Portals, Health Information Exchanges, etc.<br />Pharmacy<br />Revenue Cycle<br />RedCAP<br />ChIP-Seq<br />Demographics <br />Patient & Participant Portal(s)<br />Assay-Specific <br />ClickCommerce (IRB)<br />Pathology<br />Velos<br />Organ Systems <br />Metabolomics<br />Scheduling<br />Radiology<br />Population-Risks <br />OpenCLinica<br />eThority (billing)<br />Proteomics<br />Nursing Docs<br />Qual/Outcomes <br />Biorepositories<br />Health Information Exchange<br />Epic Clarity<br />Research Data Warehouse<br />CDR<br />Note: Use of specific technologies not implied at this time<br />Honest Broker & Security Infrastructure<br />Messaging Bus & ETL Services<br />Terminology Resources<br />(ICD-10, caDSR, SNOMED, etc.)<br />External Resources (PubMed, GenBank, KEGG, GO, etc.)<br />Data Sharing with External Collaborators<br />Health Sciences Library Resources<br />International<br />Cohort Discovery & Data Mining<br />Genomics data workbench(es)<br />caBIG<br />CTSAs<br />TCGA<br />
  38. 38. High Level Conceptual Diagram<br />Research Interface with the Clinical Record<br />Common Specimen Identifier Services<br />Terminology mapping systems<br />Transactional Research Systems<br />Analytic Research Systems<br />Laboratory Research/ ‘Omics’<br />Clinical POC systems<br />Patient , Participant<br />& Provider <br />Facing<br />Systems<br />Epic<br />Legacy<br />CareLink/<br />Eclipsys<br />Ambulatory<br />Research <br />EDC Systems<br />Research <br />AdministrationSystems<br />Next-Gen Sequencing<br />Disease-Specific <br />Emergency Med.<br />Pharmacy<br />Revenue Cycle<br />RedCAP<br />ChIP-Seq<br />Demographics <br />Patient & Participant Portal(s)<br />Assay-Specific <br />ClickCommerce (IRB)<br />Pathology<br />Velos<br />Organ Systems <br />Metabolomics<br />Scheduling<br />Radiology<br />Population-Risks <br />OpenCLinica<br />eThority (billing)<br />Proteomics<br />Nursing Docs<br />Qual/Outcomes <br />Biorepositories<br />Health Information Exchange<br />Epic Clarity<br />Research Data Warehouse<br />CDR<br />Note: Use of specific technologies not implied at this time<br />Honest Broker & Security Infrastructure<br />Messaging Bus & ETL Services<br />Terminology Resources<br />(ICD-10, caDSR, SNOMED, etc.)<br />External Resources (PubMed, GenBank, KEGG, GO, etc.)<br />Data Sharing with External Collaborators<br />Health Sciences Library Resources<br />International<br />Cohort Discovery & Data Mining<br />Genomics data workbench(es)<br />caBIG<br />CTSAs<br />TCGA<br />
  39. 39. High Level Conceptual Diagram<br />Research Interface with the Clinical Record<br />Common Specimen Identifier Services<br />Data from structured clinical research activities, including phase 1, 2, and 3 clinical trials and various domain specific registries is fed via ETL or real time processes to the research data warehouse<br />Terminology mapping systems<br />Transactional Research Systems<br />Analytic Research Systems<br />Laboratory Research/ ‘Omics’<br />Clinical POC systems<br />Patient , Participant<br />& Provider <br />Facing<br />Systems<br />Epic<br />Legacy<br />CareLink/<br />Eclipsys<br />Ambulatory<br />Research <br />EDC Systems<br />Research <br />AdministrationSystems<br />Next-Gen Sequencing<br />Disease-Specific <br />Emergency Med.<br />Pharmacy<br />Revenue Cycle<br />RedCAP<br />ChIP-Seq<br />Demographics <br />Patient & Participant Portal(s)<br />Assay-Specific <br />ClickCommerce (IRB)<br />Pathology<br />Velos<br />Organ Systems <br />Metabolomics<br />Scheduling<br />Radiology<br />Population-Risks <br />OpenCLinica<br />eThority (billing)<br />Proteomics<br />Nursing Docs<br />Qual/Outcomes <br />Biorepositories<br />Health Information Exchange<br />Epic Clarity<br />Research Data Warehouse<br />CDR<br />Note: Use of specific technologies not implied at this time<br />Honest Broker & Security Infrastructure<br />Messaging Bus & ETL Services<br />Terminology Resources<br />(ICD-10, caDSR, SNOMED, etc.)<br />External Resources (PubMed, GenBank, KEGG, GO, etc.)<br />Health Sciences Library Resources<br />Data Sharing with External Collaborators<br />International<br />Cohort Discovery & Data Mining<br />Genomics data workbench(es)<br />caBIG<br />CTSAs<br />TCGA<br />
  40. 40. High Level Conceptual Diagram<br />Research Interface with the Clinical Record<br />Common Specimen Identifier Services<br />Terminology mapping systems<br />Transactional Research Systems<br />Analytic Research Systems<br />Laboratory Research/ ‘Omics’<br />Clinical POC systems<br />Patient , Participant<br />& Provider <br />Facing<br />Systems<br />Data capture from biorepository, laboratory, core facility support systems feeds data to the Enterprise Research Data Warehouse.<br />This allows us to capture data about cellular and molecular-scale phenotypes, and to integrate genomics and other ‘omic’-scale data.<br />Epic<br />Legacy<br />CareLink/<br />Eclipsys<br />Ambulatory<br />Research <br />EDC Systems<br />Research <br />AdministrationSystems<br />Next-Gen Sequencing<br />Disease-Specific <br />Emergency Med.<br />Pharmacy<br />Revenue Cycle<br />RedCAP <br />ChIP-Seq<br />Demographics <br />Patient & Participant Portal(s)<br />Assay-Specific <br />ClickCommerce (IRB)<br />Pathology<br />Velos<br />Organ Systems <br />Metabolomics<br />Scheduling<br />Radiology<br />Population-Risks <br />OpenCLinica<br />eThority (billing)<br />Proteomics<br />Nursing Docs<br />Qual/Outcomes <br />Biorepositories<br />Health Information Exchange<br />Epic Clarity<br />Research Data Warehouse<br />CDR<br />Note: Use of specific technologies not implied at this time<br />Honest Broker & Security Infrastructure<br />Messaging Bus & ETL Services<br />Terminology Resources<br />(ICD-10, caDSR, SNOMED, etc.)<br />External Resources (PubMed, GenBank, KEGG, GO, etc.)<br />Health Sciences Library Resources<br />Data Sharing with External Collaborators<br />International<br />Cohort Discovery & Data Mining<br />Genomics data workbench(es)<br />caBIG<br />CTSAs<br />TCGA<br />
  41. 41. High Level Conceptual Diagram<br />Research Interface with the Clinical Record<br />Research administration systems provide research billing data to the enterprise data warehouse.<br />Integration of clinical and research billing is now possible at several levels<br />Common Specimen Identifier Services<br />Terminology mapping systems<br />Transactional Research Systems<br />Analytic Research Systems<br />Laboratory Research/ ‘Omics’<br />Clinical POC systems<br />Patient , Participant<br />& Provider <br />Facing<br />Systems<br />Epic<br />Legacy<br />CareLink/<br />Eclipsys<br />Ambulatory<br />Research <br />EDC Systems<br />Research <br />AdministrationSystems<br />Next-Gen Sequencing<br />Disease-Specific <br />Emergency Med.<br />Pharmacy<br />Revenue Cycle<br />RedCAP <br />ChIP-Seq<br />Demographics <br />Patient & Participant Portal(s)<br />Assay-Specific <br />ClickCommerce (IRB)<br />Pathology<br />Velos<br />Organ Systems <br />Metabolomics<br />Scheduling<br />Radiology<br />Population-Risks <br />OpenCLinica<br />eThority (billing)<br />Proteomics<br />Nursing Docs<br />Qual/Outcomes <br />Biorepositories<br />Health Information Exchange<br />Epic Clarity<br />Research Data Warehouse<br />CDR<br />Note: Use of specific technologies not implied at this time<br />Honest Broker & Security Infrastructure<br />Messaging Bus & ETL Services<br />Terminology Resources<br />(ICD-10, caDSR, SNOMED, etc.)<br />External Resources (PubMed, GenBank, KEGG, GO, etc.)<br />Health Sciences Library Resources<br />Data Sharing with External Collaborators<br />International<br />Cohort Discovery & Data Mining<br />Genomics data workbench(es)<br />caBIG<br />CTSAs<br />TCGA<br />
  42. 42. High Level Conceptual Diagram<br />Research Interface with the Clinical Record<br />Common Specimen Identifier Services<br />Terminology mapping systems<br />Epic/Clarity clinical data warehouse captures clinical phenotypes and time series care events.<br />Data from Clarity and legacy CDR is fed to Research Data Warehouse for analytic, clinical research, and translation research support. <br />Transactional Research Systems<br />Analytic Research Systems<br />Laboratory Research/ ‘Omics’<br />Clinical POC systems<br />Patient , Participant<br />& Provider <br />Facing<br />Systems<br />Epic<br />Legacy<br />CareLink/<br />Eclipsys<br />Ambulatory<br />Research <br />EDC Systems<br />Research <br />AdministrationSystems<br />Next-Gen Sequencing<br />Disease-Specific <br />Emergency Med.<br />Pharmacy<br />Revenue Cycle<br />RedCAP <br />ChIP-Seq<br />Demographics <br />Patient & Participant Portal(s)<br />Assay-Specific <br />ClickCommerce (IRB)<br />Pathology<br />Velos<br />Organ Systems <br />Metabolomics<br />Scheduling<br />Radiology<br />Population-Risks <br />OpenCLinica<br />eThority (billing)<br />Proteomics<br />Nursing Docs<br />Qual/Outcomes <br />Biorepositories<br />Health Information Exchange<br />Epic Clarity<br />Research Data Warehouse<br />CDR<br />Note: Use of specific technologies not implied at this time<br />Honest Broker & Security Infrastructure<br />Messaging Bus & ETL Services<br />Terminology Resources<br />(ICD-10, caDSR, SNOMED, etc.)<br />External Resources (PubMed, GenBank, KEGG, GO, etc.)<br />Health Sciences Library Resources<br />Data Sharing with External Collaborators<br />International<br />Cohort Discovery & Data Mining<br />Genomics data workbench(es)<br />caBIG<br />CTSAs<br />TCGA<br />
  43. 43. High Level Conceptual Diagram<br />Research Interface with the Clinical Record<br />Common Specimen Identifier Services<br />Terminology mapping systems<br />Transactional Research Systems<br />Analytic Research Systems<br />Laboratory Research/ ‘Omics’<br />Clinical POC systems<br />Patient , Participant<br />& Provider <br />Facing<br />Systems<br />Epic<br />Legacy<br />Example Scientific Use case: <br />“Show me all HER2+ Br Ca patients who have received Herceptin, are consented for research use of tissue, and who have banked DNA and needle aspirates”<br />CareLink/<br />Eclipsys<br />Ambulatory<br />Research <br />EDC Systems<br />Research <br />AdministrationSystems<br />Next-Gen Sequencing<br />Disease-Specific <br />Emergency Med.<br />Pharmacy<br />Revenue Cycle<br />RedCAP<br />ChIP-Seq<br />Demographics <br />Patient & Participant Portal(s)<br />Assay-Specific <br />ClickCommerce (IRB)<br />Pathology<br />Velos<br />Organ Systems <br />Metabolomics<br />Scheduling<br />Radiology<br />Population-Risks <br />OpenCLinica<br />eThority (billing)<br />Proteomics<br />Nursing Docs<br />Qual/Outcomes <br />Biorepositories<br />Health Information Exchange<br />Epic Clarity<br />Research Data Warehouse<br />CDR<br />Note: Use of specific technologies not implied at this time<br />Honest Broker & Security Infrastructure<br />Messaging Bus & ETL Services<br />Terminology Resources<br />(ICD-10, caDSR, SNOMED, etc.)<br />External Resources (PubMed, GenBank, KEGG, GO, etc.)<br />Data Sharing with External Collaborators<br />Health Sciences Library Resources<br />International<br />Cohort Discovery & Data Mining<br />Genomics data workbench(es)<br />caBIG<br />CTSAs<br />TCGA<br />
  44. 44. Ex: “Show me all HER2+ Br Ca patients who have received Herceptin…”<br />High Level Conceptual Diagram<br />Research Interface with the Clinical Record<br />Common Specimen Identifier Services<br />Terminology mapping systems<br />Transactional Research Systems<br />Analytic Research Systems<br />Laboratory Research/ ‘Omics’<br />Clinical POC systems<br />Patient , Participant<br />& Provider <br />Facing<br />Systems<br />Epic<br />Legacy<br />CareLink/<br />Eclipsys<br />Ambulatory<br />Research <br />EDC Systems<br />Research <br />AdministrationSystems<br />Next-Gen Sequencing<br />Disease-Specific <br />Emergency Med.<br />Pharmacy<br />Revenue Cycle<br />RedCAP<br />ChIP-Seq<br />Demographics <br />Patient & Participant Portal(s)<br />Assay-Specific <br />ClickCommerce (IRB)<br />Pathology<br />Velos<br />Organ Systems <br />Metabolomics<br />Scheduling<br />Radiology<br />Population-Risks <br />OpenCLinica<br />eThority (billing)<br />Proteomics<br />Nursing Docs<br />Qual/Outcomes <br />Biorepositories<br />Health Information Exchange<br />Epic Clarity<br />Research Data Warehouse<br />CDR<br />Addressing this use case may require data from all of the systems shown in red…<br />Honest Broker & Security Infrastructure<br />Messaging Bus & ETL Services<br />Terminology Resources<br />(ICD-10, caDSR, SNOMED, etc.)<br />External Resources (PubMed, GenBank, KEGG, GO, etc.)<br />Data Sharing with External Collaborators<br />Health Sciences Library Resources<br />International<br />Cohort Discovery & Data Mining<br />Genomics data workbench(es)<br />caBIG<br />CTSAs<br />TCGA<br />
  45. 45. Ex: “Show me all HER2+ Br Ca patients who have received Herceptin…”<br />High Level Conceptual Diagram<br />Research Interface with the Clinical Record<br />Common Specimen Identifier Services<br />Terminology mapping systems<br />Transactional Research Systems<br />Analytic Research Systems<br />Laboratory Research/ ‘Omics’<br />Clinical POC systems<br />Patient , Participant<br />& Provider <br />Facing<br />Systems<br />Epic<br />Legacy<br />CareLink/<br />Eclipsys<br />Ambulatory<br />Research <br />EDC Systems<br />Research <br />AdministrationSystems<br />Next-Gen Sequencing<br />Disease-Specific <br />Emergency Med.<br />Pharmacy<br />Revenue Cycle<br />RedCAP<br />ChIP-Seq<br />Demographics <br />Patient & Participant Portal(s)<br />Assay-Specific <br />ClickCommerce (IRB)<br />Pathology<br />Velos<br />Organ Systems <br />Metabolomics<br />Scheduling<br />Radiology<br />Population-Risks <br />OpenCLinica<br />eThority (billing)<br />Proteomics<br />Nursing Docs<br />Qual/Outcomes <br />Biorepositories<br />Health Information Exchange<br />Epic Clarity<br />Research Data Warehouse<br />CDR<br />Ideally, however, the data has been stored in the enterprise research data warehouse, and only the following systems come into play in real time to answer the investigators query. <br />Honest Broker & Security Infrastructure<br />Messaging Bus & ETL Services<br />Terminology Resources<br />(ICD-10, caDSR, SNOMED, etc.)<br />External Resources (PubMed, GenBank, KEGG, GO, etc.)<br />Data Sharing with External Collaborators<br />Health Sciences Library Resources<br />International<br />Cohort Discovery & Data Mining<br />Genomics data workbench(es)<br />caBIG<br />CTSAs<br />TCGA<br />
  46. 46. NCIBI/i2b2 Demo Scenario April 2009<br />… in patient data…<br />Diagnostic<br />Categories<br />Drag/Drop<br />… in Term<br />Navigator…<br />ICD9 to Gene<br />Plugin (new)<br />… in other <br />contexts…<br />ICD9 to Gene<br />Service (new)<br />NCIBI<br />Databases<br />Related<br />genes<br />
  47. 47. NCIBI/i2b2 Tool Integration and Scaling Concept<br />Adding in Cytoscape<br />>Cytoscape!<br />
  48. 48. HIT-Enabled Health ReformAchieving Meaningful Use<br />2009<br />2011<br />2013<br />2015<br />HIT-Enabled Health Reform<br />Meaningful Use Criteria<br />HITECH Policies<br />2011 Meaningful Use Criteria (Capture/share data)<br />2013 Meaningful Use Criteria<br />(Advanced care processes with decision support)<br />2015 Meaningful Use Criteria (Improved Outcomes)<br />27<br />
  49. 49. The “other” informatics…<br />Consumer Health Informatics<br />Bioinformatics<br />Clinical Informatics<br />Courtesy, Larry An<br />
  50. 50. Sweet Spot Science<br />Bioinformatics<br />Consumer Health Informatics<br />Personalized Clinical Trial Recuitment<br />Tailored Biobank Consent<br />Remote Patient Monitoring for Protocol and Medication Adherence<br />Cohort Discovery and Data Collection<br />Cancer Survivorship Comparative-Effectiveness Research<br />Clinical Informatics<br />Courtesy, Larry An<br />
  51. 51. Sweet Spot Science<br />Bioinformatics<br />Consumer Health Informatics<br />Personalized Clinical Trial Recruitment<br />Eligibility Analysis (MICHR, Bioinformatics)<br />MCancer Survey (CCOG, Team Leads 1-7)<br />Clinical trial awareness, offers<br />Registry interest<br />Culturally Sensitive Online Clinical Trial Education (Go-Miami, Hawley)Courtesy, Larry An<br />Clinical Informatics<br />
  52. 52. Special Thanks<br />NCIBI Program Officer (PO) – Dr. Karen Skinner, NIDA<br />NCIBI Lead Science Officer (LSO) – Dr. Jane Ye, NLM Director of Bioinformatics and Computational Biology<br />Dr. German Cavelier, NIMH; NCIBI Science Officer<br />Dr. Peter Lyster, NIGMS; Center for Bioinformatics and Computational Biology<br />Director, Center for Bioinformatics and Computational Biology, NIGMS; Dr. Karin Remington<br />Elaine Collier, NCRR<br />NIGMS/NIDA U54-DA-0215191 <br />UL-1RR024986/NCRR CTSA<br />

×