Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Lasers in the Undergraduate Laboratory: Precision Measurement for the Masses

2,820 views

Published on

Slides from my talk at the APS

Published in: Education, Technology, Business
  • Be the first to comment

  • Be the first to like this

Lasers in the Undergraduate Laboratory: Precision Measurement for the Masses

  1. 1. Lasers in the Undergraduate Laboratory: Precision Measurement for the Masses<br />Chad Orzel<br />Union College Department of Physics and Astronomy<br />
  2. 2. History<br />1957-8: Townes & Schawlow, Gould proposals <br />1960: First (pulsed) ruby laser<br /> Theodore Maiman<br /> First (CW) gas laser (HeNe)<br />Javan, Bennett, Herriott<br />1962: First semiconductor laser<br /> Hall, Fenner, Kingsley, Soltys, Carlson<br />1970: CW heterostructure lasers<br />Alferov, Panish<br />
  3. 3. Applications<br />Medical:<br /> Laser surgery, laser therapy<br />Industrial: <br /> Laser cutting, welding<br />Telecommunications:<br /> Diode lasers<br /> Fiber lasers<br /> Fiber optics<br />
  4. 4. Lasers in Science<br />Lasers have become an indispensible tool in modern science:<br />Session B5: Five Legacies from the Laser<br />J15.00001 : Laser-combined STM and probing <br /> ultrafast transient dynamics<br />L10.00006 : Laser-Assisted Single Molecule Refolding<br />P10.00009 : A remote control for the C. elegans nervous system<br />Session V27: Focus Session: Attosecond Science and <br /> Strong Field Chemical Physics I<br />
  5. 5. Precision Measurement<br />My opinion: most impressive applications are in precision measurement<br />At this meeting:<br />Session Q27: Focus Session: New Trends in Spectroscopy III<br /> (Wed 11:15-2:15)<br />Session T4: Keithly Award Session: Precision Time <br /> and Frequency Measurements (Wed 2:30-5:30)<br />Laser spectroscopic methods, interferometry, pulse timing <br />World’s best measurements mostly involve lasers<br />
  6. 6. Lasers for Undergraduates<br />Can do laser measurements “on the cheap”<br />Discuss three experiments, make analogy to real techniques<br />1) Lunar Laser Ranging  Measuring Speed of Light<br />Intro mechanics/ sophomore modern physics<br />2) LIGO Index of Refraction of Air<br />Sophomore modern physics<br />3) Atomic Clocks Laser Spectroscopy of Rubidium<br />Junior/senior level advanced lab<br />Can’t match precision of real experiments<br /> Can get basic idea<br />
  7. 7. Resources<br />Lawrence University<br />Keck Foundation Report<br />2005<br />NECUSE Modern Optics Group<br />Laboratory Resource Book<br />1991<br />
  8. 8. Lunar Laser Ranging<br />Retro-reflector arrays left on Moon by Apollo missions<br />Round-trip time gives Earth-Moon distance<br />~ mm precision (out of 380,000,000 m)<br />http://www.physics.ucsd.edu/~tmurphy/apollo/<br />
  9. 9. Speed of Light Lab<br />Measuring the speed of light<br />Used in intro calculus-based mechanics class<br />sophomore modern physics class<br />Pulsed diode laser<br />Send beam across<br /> lab and back<br />Record pulse time<br /> w/ digital scope<br />
  10. 10. Speed of Light Data<br />Distance across lab:<br />15.87 ±0.02 m<br />Travel time:<br />52.8 ± 0.1 ns<br />c = 3.01 ± 0.07 ×108 m/s<br />Good agreement (<1%)<br />Simple procedure<br />Introduce instrumentation,<br /> uncertainty analysis<br />
  11. 11. LIGO<br />Laser Interferometer Gravitational wave Observatory<br />Kilometer-scale Michelson Interferometer<br />Detect small changes in length of arms<br />Sensitive to ~10-18m shifts<br />http://www.ligo.caltech.edu/<br />Hanford, WA<br />Livingston, LA<br />
  12. 12. Michelson Interferometer<br />Sophomore modern<br /> physics lab<br />HeNe laser, PASCO<br /> sensor, computer<br />Commercial interferometer<br /> apparatus<br />Also use in Jr/ Sr elective<br /> Modern Classical Optics<br /> (Assemble from components, measure Na D line splitting)<br />
  13. 13. Index of Refraction of Air<br />
  14. 14. Interference Fringes<br />Record light intensity<br /> using computer<br />Count fringes as air<br /> pumped out of cell<br />18.25 ± 0.25 fringes<br />Dn = 1.92±0.03×10-4<br />
  15. 15. Index of Refraction Data<br />
  16. 16. Laser-Cooled Atomic Clocks<br />Second defined in terms of hyperfine<br /> splitting of Cs ground state<br />Ramsey interferometry,<br /> fountain geometry<br />Current standards good to<br />Basis for GPS navigation, etc.<br />NIST F-1<br />Boulder CO<br />
  17. 17. Laser Spectroscopy of Rubidium<br />Experiment for Physics 300:<br />“Modern Experimental Physics” <br />Required Jr/Sr level lab course<br />2-4 faculty lead students through<br /> 6-8 experiments in 10 weeks<br />Experiments include: X-ray diffraction, Rutherford scattering, PIXE<br />Mössbauer spectroscopy, molecular spectroscopy<br />Spectroscopy: Two-part experiment, 2-3 weeks:<br />1) Calibration of Fabry-Perot Interferometer<br />2) Measurement of Rb ground state hyperfine splitting<br />
  18. 18. Fabry-Perot Calibration<br />Determine free spectral<br /> range of homemade<br />confocal FPI<br />Follow procedure in <br /> AJP 73, 1135 (2005)<br />Students given paper, asked<br /> to determine procedure to<br /> be followed<br />
  19. 19. Fabry-Perot Calibration<br />Measure transmission spectrum<br /> using multi-mode HeNe<br />Inter-mode spacing measured by beat note<br />Serves as frequency reference for calibration of free spectral range<br />
  20. 20. Laser Spectroscopy of Rubidium<br />Free-running diode laser<br /> @780 nm (ThorLabs)<br />Scan frequency by<br /> current sweep<br />Use FPI as frequency<br /> reference<br />Students given lab from Brandenberger report, asked to determine<br /> procedure to be followed<br />Introduce hyperfine structure, laser spectroscopy<br />
  21. 21. Rubidium Spectrum<br />(out of 384 THz)<br />Ultimately limited by<br /> laser/Doppler width<br />Improve with grating,<br /> saturated absorption<br />(Student data: Bartell, Handin, Miles, Pathak 2009)<br />
  22. 22. Beyond Course Work<br />Laser experiments provide <br /> ample opportunities for<br /> research experience<br />Laser-related projects at Union<br />Laser cooling and trapping<br />Optical tweezers<br />Laser light scattering<br />Laser cleaning/ art restoration<br />Single-photon interference<br />etc.<br />(saturated absorption lock signal in Kr<br /> data recorded by B. Miles)<br />Essential capstone of undergraduate education<br />
  23. 23. Conclusions<br />Lasers are central to many modern precision measurements<br />“Cheap” and “easy” experiments can introduce idea of lasers<br /> as measurement tools in undergraduate laboratories<br />Opportunity to introduce modern techniques, data reduction,<br /> uncertainty analysis, etc.<br />Acknowledgements:<br />S. Maleki<br />J. Newman<br />J. Marr<br />J. Sheehan<br />C. Fletcher<br />R. Bonventre<br />B. Bartell<br />A. Handin<br />B. Miles<br />S. Pathak<br />

×