Semantic extensions to ecoRelevéOlivier Rovellotti
• The projet• The Sem Web• The extentions
ReduceSoftware complexity
For who?People we know:                  People we don’t know?
What for?                 Ask        Analyze               Questions     data                Define  Data Admin   Protocol...
DBA/GIS   ResearchProfessionalCitizen Science                 PHD                  3 Modules
RDF
2007
2009
2012Life Science
Now what ?
What is it good for?     •   Better annotations     •   Easier data integration     •   More extensible     •   More expre...
Aggregate data  Controlled Vocabularies:                     Enhance existingBuild protocols                        datase...
Annotations
ecoRelevéCore
1.0Data integration        Observation   Layers
Data enhancement        ecoRelevé        explorer
4 dimensions                        Space               People           Biology                        Time
GeoSparql                 Localities                               Protected Areas       Work                             ...
Data connector
Milan royalMilvus milvusRed Kite
Rod Page - what can you do with it ?
SPARQL:Catch the frog                                                      TAISTY!select ?scientificName, ?status, ?lat, ?...
Take home message :    •   There is a learning curve    •   But RDF is not that difficult    •   One API is better than 10...
Thanks ..@orovellotti
Tdwg2011
Tdwg2011
Tdwg2011
Tdwg2011
Upcoming SlideShare
Loading in …5
×

Tdwg2011

1,533 views

Published on

Sem Web Extention to ecoReleve

Published in: Technology, Education
  • Be the first to comment

Tdwg2011

  1. 1. Semantic extensions to ecoRelevéOlivier Rovellotti
  2. 2. • The projet• The Sem Web• The extentions
  3. 3. ReduceSoftware complexity
  4. 4. For who?People we know: People we don’t know?
  5. 5. What for? Ask Analyze Questions data Define Data Admin Protocols Collect data
  6. 6. DBA/GIS ResearchProfessionalCitizen Science PHD 3 Modules
  7. 7. RDF
  8. 8. 2007
  9. 9. 2009
  10. 10. 2012Life Science
  11. 11. Now what ?
  12. 12. What is it good for? • Better annotations • Easier data integration • More extensible • More expressive
  13. 13. Aggregate data Controlled Vocabularies: Enhance existingBuild protocols dataset forms
  14. 14. Annotations
  15. 15. ecoRelevéCore
  16. 16. 1.0Data integration Observation Layers
  17. 17. Data enhancement ecoRelevé explorer
  18. 18. 4 dimensions Space People Biology Time
  19. 19. GeoSparql Localities Protected Areas Work Conservation Status SpaceFOAF Time People Biology Friends Family At the same time as Last week
  20. 20. Data connector
  21. 21. Milan royalMilvus milvusRed Kite
  22. 22. Rod Page - what can you do with it ?
  23. 23. SPARQL:Catch the frog TAISTY!select ?scientificName, ?status, ?lat, ?long ecoReleveFROM <urn:rdf.TdwgFroggyChallenge>where { ?s rdf:type uniprot:Molecule . ?s terms:relation ?id. ?s terms:subject ?taxonInGB . SparQL ?id geo:lat ?lat. ?id geo:long ?long. ?taxonInDbPedia dbOwl:conservationStatus ?status. ?taxonInGB rdfs:seeAlso ?taxonInDbPedia. ?taxonInGB uniprot:scientificName ?scientificName.}
  24. 24. Take home message : • There is a learning curve • But RDF is not that difficult • One API is better than 10 • We need data in RDF to experiment • Reasoning is for later …
  25. 25. Thanks ..@orovellotti

×