We've updated our privacy policy. Click here to review the details. Tap here to review the details.
Activate your 30 day free trial to unlock unlimited reading.
Activate your 30 day free trial to continue reading.
The analysis of daily living human behavior has proven to be of key importance to prevent unhealthy habits. The diversity of activities and the individuals’ particular execution style determine that several sources of information are normally required. One of the main issues is to optimally combine them to guarantee performance, scalability and robustness. In this paper we present a fusion classification methodology which takes into account the potential of the individual decisions yielded at both activity and sensor classification levels. Particularly tested on a wearable sensors based system, the method reinforces the idea that some parts of the body (i.e., sensors) may be specially informative for the recognition of each particular activity, thus supporting the ranking of the decisions provided by each associated sensor decision entity. Our method systematically outperforms the results obtained by traditional multiclass models which otherwise may require a high-dimensional feature space to acquire a similar performance. The comparison with other activity-recognition fusion approaches also demonstrates our model scales significantly better for small sensor networks.
This presentation illustrates part of the work described in the following articles:
* Banos, O., Damas, M., Pomares, H., Rojas, F., Delgado-Marquez, B. & Valenzuela, O. Human activity recognition based on a sensor weighting hierarchical classifier.
Soft Computing - A Fusion of Foundations, Methodologies and Applications, Springer Berlin / Heidelberg, vol. 17, pp. 333-343 (2013)
* Banos, O., Damas, M., Pomares, H., Rojas, I.: Recognition of Human Physical Activity based on a novel Hierarchical Weighted Classification scheme. In: Proceedings of the 2011 International Joint Conference on Neural Networks (IJCNN 2011), IEEE, San José, California, July 31- August 5, (2011)
The analysis of daily living human behavior has proven to be of key importance to prevent unhealthy habits. The diversity of activities and the individuals’ particular execution style determine that several sources of information are normally required. One of the main issues is to optimally combine them to guarantee performance, scalability and robustness. In this paper we present a fusion classification methodology which takes into account the potential of the individual decisions yielded at both activity and sensor classification levels. Particularly tested on a wearable sensors based system, the method reinforces the idea that some parts of the body (i.e., sensors) may be specially informative for the recognition of each particular activity, thus supporting the ranking of the decisions provided by each associated sensor decision entity. Our method systematically outperforms the results obtained by traditional multiclass models which otherwise may require a high-dimensional feature space to acquire a similar performance. The comparison with other activity-recognition fusion approaches also demonstrates our model scales significantly better for small sensor networks.
This presentation illustrates part of the work described in the following articles:
* Banos, O., Damas, M., Pomares, H., Rojas, F., Delgado-Marquez, B. & Valenzuela, O. Human activity recognition based on a sensor weighting hierarchical classifier.
Soft Computing - A Fusion of Foundations, Methodologies and Applications, Springer Berlin / Heidelberg, vol. 17, pp. 333-343 (2013)
* Banos, O., Damas, M., Pomares, H., Rojas, I.: Recognition of Human Physical Activity based on a novel Hierarchical Weighted Classification scheme. In: Proceedings of the 2011 International Joint Conference on Neural Networks (IJCNN 2011), IEEE, San José, California, July 31- August 5, (2011)
You just clipped your first slide!
Clipping is a handy way to collect important slides you want to go back to later. Now customize the name of a clipboard to store your clips.The SlideShare family just got bigger. Enjoy access to millions of ebooks, audiobooks, magazines, and more from Scribd.
Cancel anytime.Unlimited Reading
Learn faster and smarter from top experts
Unlimited Downloading
Download to take your learnings offline and on the go
You also get free access to Scribd!
Instant access to millions of ebooks, audiobooks, magazines, podcasts and more.
Read and listen offline with any device.
Free access to premium services like Tuneln, Mubi and more.
We’ve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data.
You can read the details below. By accepting, you agree to the updated privacy policy.
Thank you!