Big Data in Hong Kong -- Daniel Ng

668 views

Published on

This is Daniel Ng's presentation from the 15 May 2014 meeting of the Hong Kong Big Data community. Along with Toa Charm and myself (Scott Drummonds), Daniel presented on big data in Hong Kong to a joint session of HKBD and the Chinese University of Hong Kong MBA consulting club.

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
668
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
12
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Big Data in Hong Kong -- Daniel Ng

  1. 1. Part  of  Toa's  BISIG  group     Academic  +  Business   -­‐  Informa;on  Management,  Data  transforma;on,  Knowledge  discovery,  Smart  Ci;es,   Touch  the  ground  落地,  Integrated  repor;ng,  Learning  organiza;on     Career   -­‐  Kunshan  digital  tex;le  prin;ng  (30%,  major  shareholder  from  Taiwan  )   -­‐  Teleco  in  Guangzhou  internet  mining   -­‐  Shanghai  haute  courture  agency   -­‐  helping  three  Chinese  universi;es  on  BIG  DATA  &  Smart  Ci;es  research     -­‐  MBOs  in  2014   •  -­‐  HK  :  BIG  DATA  ARCHITECT  (media  and  transporta;on,  over  HKD  10M  PO  on   hand,  IBM    Blue  on  Power7)   •  -­‐  HK  :  SHKP    and  Wechat   •  -­‐  HK  :  Younger  brother  -­‐  Cloud-­‐based  insurance,  GPS,  car  parking,  luxury  item   courier     Key  events   -­‐  Big  data  for  public  security  earlier  June2014  (Shanghai  Police  Research)   -­‐  Big  data  for  cyber  intelligence  Sept  2014  (Law  enforcement  in  Europe)     -­‐  Chair  a  Big  data  Cyber  intelligence  conference    Oct2014  (U  of  Reading  UK)    
  2. 2. public  cases  in  BIG  DATA  applica;ons   1.  -­‐  HK  Government  SARS  back  tracking  in  2003,  involving  Law  Enforcement  super   compu;ng   2.  -­‐  SEC  on  ENRON  2012,  more  than  1  PB  of  documents  to  cluster   3.  KYC/  DD  /  AML  /  opera;on  in  HK  Financial  repor;ng  Council,  BIG-­‐4  and  Private   bankers,  financial  assessors  works  in  due  diligences     Exis;ng  public  players  in  BIG  DATA     A.  -­‐  google,  yahoo,  facebook,  linkedin,   B.  -­‐  Fac;va,  Bloomberg,  D&B,  HK  Ex,  HSBC  and  most  interna;onal  banks.   C.  -­‐  BIG  DATA  in  a  small  storage.  D&B  database  on  SAS  located  in  St  Kilda.  A  cabinet   (  to  hold  Asia  Pacific  Credit  informa;on,  like  Duns'  no)  
  3. 3. First  Ques;on       BIG  DATA  only  for  large  firm?  how   about  SME  
  4. 4. Puzzles   (A)  4V     -­‐  Variety  -­‐  data  model,  Velocity  -­‐  GPU,  no  more  Von  Neuman  architecture,     -­‐  volume  -­‐  cloud   -­‐  why  spending  money  on  "Veracity",  unclear  maher     (B)  some  BIG  data  seminar  is  a  variant  of  digital  marke;ng       (C)  only  cost  control,  why  not  top-­‐line  improvement     (D)  Focus  on  numeric  solely  (only  5-­‐15%  of  big  data),  need  opera;onalizing  text-­‐mining?   voice?  video?   -­‐  Last  30  years  HK  Chinese  newspaper  scanning     (E)  more  data    -­‐  bigger    the  beher?    bad  data?  Noise?     -­‐  My  Guangzhou  telco    research  work       (F)  informa;on  security  and  privacy,  big  data  leakage   -­‐  Toa’s  sharing  on  Target   -­‐  How  to  do  security  and  privacy  on  external  data,  such  as  consumer  movement,?  Any   exchange  on  unstructured  data  ?   -­‐  K-­‐anonymity  
  5. 5. Second  Ques;on       BIG  DATA  a  tool  (SWOT)  or  a   system     (Balanced  Score  Card)  ?     Need  an  inside-­‐out  change  on   management  paradigm  ?  
  6. 6. BIG  DATA  as   Social  System  •  Big  Data  posi;oning  (Descrip;ve  ,  predic;ve  and  prescrip;ve)     •  Big  Data  characteriza;on  (classifica;on,  regression,     similarity,  clustering)     •  Big  Data  reorganiza;on  (Co-­‐occurrence,  profiling  )   •  Big  data  casual  and  effect  (Link  predict,  Data  reduc;on,   casual  modelling  )   •  Real  ;me  analy;cs   •  Visualiza;on  **(like  Laplace  and  Fourier  Transform)   My  research   focus  
  7. 7. Random  Matrix  Theory  
  8. 8. Connected   (1)  u  of  tokyo  -­‐  random  matrix,    monte  carlo,  stacy  matrix  ,  correla;onal   noise   (2)  u  of  lyon  (claude  bernard  )  -­‐  business  weak  signal  detec;on     (3)  TUM  -­‐  big  data  on  bio  informa;cs,  3D  prin;ng   (4)  UC  Davis  –  Ironman’s  visualiza;on  clustering   (5)  Beijing  Central  Science  Academy  (中科院)  –  social  big  data     Known   (5)  CUHK  (IE)  -­‐  Network  coding,    new  transporta;on  for  big  data,  UGC  AOE   (6)  HKUST  –    QR  code  hos;ng  4GB  

×