ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS

3,562 views

Published on

Seismic Exploration: Fundementals

Published in: Education, Technology, Business
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
3,562
On SlideShare
0
From Embeds
0
Number of Embeds
6
Actions
Shares
0
Downloads
398
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS

  1. 1. Introduction to Geophysics Ali Oncel [email_address] Department of Earth Sciences KFUPM Seismic Exploration: Fundamentals 1
  2. 2. <ul><li>Nafe-Drake Curves suggesting that compressional wave velocity and density are directly proportional . The below equation: </li></ul>Implies that P-wave velocity is inversely proportional to density, Explain the paradox. Homework, Due to Wednesday
  3. 3. Homework due to Wednesday <ul><li>Using the information in the below figures, Explain the anomalous positions of Vp and Vs for ice. </li></ul>
  4. 4. Previous Lecture Elastic Coefficients and Seismic Waves Birc's Law Nafe-Drake Curve Factors affecting P-wave and S-wave velocity Seismic velocities for Geological Materials Amplitude Changes of Particle Motions Wavefronts and RayPaths Seismic Trace Seismic Wave Types
  5. 5. Reminder: Seismic Velocity in a homogeneous medium V=(appropriate elastic modulus/density) 1/2 What is relationship of rock density to seismic velocity? Inversely proportional to the square root of the density From Tom Boyd’s WWW Site - http://talus.mines.edu/fs_home/tboyd/GP311/introgp.shtml V =  = = k + ( )   + 2    p 4/3 V =  =   s
  6. 6. Elastic Moduli <ul><li>Where  Shear Modules </li></ul><ul><li>  Lame’s lambda constant </li></ul><ul><li>E= Young’s module </li></ul><ul><li>ρ= mass density </li></ul><ul><li>σ = Poisson’s ratio </li></ul>Bulk Module is k  = k - = 2  σ E 3 ( 1 + σ ) ( 1 - 2 σ ) k = 2  2  σ υ
  7. 7. Reminder: k and  Bulk Modulus where  = dilatation =  V/V and P = pressure =k= (  P/  ) Ratio of increase in pressure to associated volume change shear stress = (  F /A)  = shear stress shear strain shear modulus shear strain = (  l /L) Force per unit area to change the shape of the material
  8. 8. Reminder: Poisson’s Ratio Ratio Vp and Vs depends on Poisson ratio: where Poisson’s ratio varies from 0 to ½. Poisson’s ratio has the value ½ for fluids
  9. 9. Reminder: Seismic Velocities (P-wave)
  10. 10. Rock Velocities (m/sec) pp. 18-19 of Berger
  11. 11. Reminder: Influences on Rock Velocities <ul><li>In situ versus lab measurements </li></ul><ul><li>Frequency differences </li></ul><ul><li>Confining pressure </li></ul><ul><li>Microcracks </li></ul><ul><li>Porosity </li></ul><ul><li>Lithology </li></ul><ul><li>Fluids – dry, wet </li></ul><ul><li>Degree of compaction </li></ul><ul><li>…………… </li></ul>
  12. 12. Huygen’s Principle
  13. 13. Fermat’s Principle pp. 20 of Burger’s book.
  14. 14. <ul><li>Travel time graph . The seismic traces are plotted according to the distance (X) from the source to each receiver. The elapsed time after the source is fired is the travel time (T). </li></ul>Travel-Time Graph T=X/V X distance from source to the receiver, T total time from the source to the receiver V seismic velocity of the P, S, or R arrival. <ul><li>Initial wave fronts for P, S and R waves , propagating across several receivers at increasing distance from the source. </li></ul>
  15. 15. Estimates of Seismic Velocity <ul><li>B) The slope of the travel time for each of the P,S, and R arrivals (see earlier figure) is the inverse of velocity. </li></ul><ul><li>The slope of line for each arrival is the first derivative </li></ul><ul><li>( dT/dX ). </li></ul>
  16. 16. A) A compressional wave , incident upon an interface at an oblique angle , is split into four phases : P and S waves reflected back into the original medium; P and S waves refracted into other medium. Reflected/Refracted Waves
  17. 17. Model Calculation Simple, Horizontal Two Layers Direct Wave?
  18. 18. Selected ray path (a) and travel-time curve 9b) for direct wave. The slope, or first derivative, is the reciprocal of the velocity (V 1 ). Direct Wave
  19. 19. Model Calculation Simple, Horizontal Two Layers Reflected Wave?
  20. 20. Model Calculation Simple, Horizontal Two Layers Head Wave or Critically Refracted?
  21. 21. All Three Arrivals
  22. 22. Ray paths for direct, reflected, and critically refracted waves, arriving at receiver a distance ( X ) from the source. The interface separating velocity ( V 1 ) from velocity ( V 2 ) material is a distance ( h ) below the surface. Ray paths
  23. 23. Snell’s Law- Critically Refracted Arrival For a wave traveling from material of velocity V 1 into velocity V 2 material, ray paths are refracted according to Snell’s law . i 1 = angle of incidence i 2 = angle of refraction
  24. 24. <ul><li>Wave fronts are distorted from perfect spheres as energy transmitted into material of different velocity. Ray paths thus bend (“ refract ”) across an interface where velocity changes . </li></ul>The angles for incident and refracted are measured from a line drawn perpendicular to the interface between the two layers. Seismic Refraction
  25. 25. Behavior of Refracted Ray on Velocity Changes

×