Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.

Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.

Like this presentation? Why not share!

- ÖNCEL AKADEMİ: INTRODUCTION TO SEIS... by Ali Osman Öncel 4801 views
- euler and fermat theorem by SARBJEET SINGH 4618 views
- ÖNCEL AKADEMİ: INTRODUCTION TO GEOP... by Ali Osman Öncel 4119 views
- Neutron density and sonic logs by Amir I. Abdelaziz 1103 views
- Electromagnetics by Solo Hermelin 1269 views
- Geophysics: Overview by guest20c737 2910 views

3,562 views

Published on

Seismic Exploration: Fundementals

No Downloads

Total views

3,562

On SlideShare

0

From Embeds

0

Number of Embeds

6

Shares

0

Downloads

398

Comments

0

Likes

2

No embeds

No notes for slide

- 1. Introduction to Geophysics Ali Oncel [email_address] Department of Earth Sciences KFUPM Seismic Exploration: Fundamentals 1
- 2. <ul><li>Nafe-Drake Curves suggesting that compressional wave velocity and density are directly proportional . The below equation: </li></ul>Implies that P-wave velocity is inversely proportional to density, Explain the paradox. Homework, Due to Wednesday
- 3. Homework due to Wednesday <ul><li>Using the information in the below figures, Explain the anomalous positions of Vp and Vs for ice. </li></ul>
- 4. Previous Lecture Elastic Coefficients and Seismic Waves Birc's Law Nafe-Drake Curve Factors affecting P-wave and S-wave velocity Seismic velocities for Geological Materials Amplitude Changes of Particle Motions Wavefronts and RayPaths Seismic Trace Seismic Wave Types
- 5. Reminder: Seismic Velocity in a homogeneous medium V=(appropriate elastic modulus/density) 1/2 What is relationship of rock density to seismic velocity? Inversely proportional to the square root of the density From Tom Boyd’s WWW Site - http://talus.mines.edu/fs_home/tboyd/GP311/introgp.shtml V = = = k + ( ) + 2 p 4/3 V = = s
- 6. Elastic Moduli <ul><li>Where Shear Modules </li></ul><ul><li> Lame’s lambda constant </li></ul><ul><li>E= Young’s module </li></ul><ul><li>ρ= mass density </li></ul><ul><li>σ = Poisson’s ratio </li></ul>Bulk Module is k = k - = 2 σ E 3 ( 1 + σ ) ( 1 - 2 σ ) k = 2 2 σ υ
- 7. Reminder: k and Bulk Modulus where = dilatation = V/V and P = pressure =k= ( P/ ) Ratio of increase in pressure to associated volume change shear stress = ( F /A) = shear stress shear strain shear modulus shear strain = ( l /L) Force per unit area to change the shape of the material
- 8. Reminder: Poisson’s Ratio Ratio Vp and Vs depends on Poisson ratio: where Poisson’s ratio varies from 0 to ½. Poisson’s ratio has the value ½ for fluids
- 9. Reminder: Seismic Velocities (P-wave)
- 10. Rock Velocities (m/sec) pp. 18-19 of Berger
- 11. Reminder: Influences on Rock Velocities <ul><li>In situ versus lab measurements </li></ul><ul><li>Frequency differences </li></ul><ul><li>Confining pressure </li></ul><ul><li>Microcracks </li></ul><ul><li>Porosity </li></ul><ul><li>Lithology </li></ul><ul><li>Fluids – dry, wet </li></ul><ul><li>Degree of compaction </li></ul><ul><li>…………… </li></ul>
- 12. Huygen’s Principle
- 13. Fermat’s Principle pp. 20 of Burger’s book.
- 14. <ul><li>Travel time graph . The seismic traces are plotted according to the distance (X) from the source to each receiver. The elapsed time after the source is fired is the travel time (T). </li></ul>Travel-Time Graph T=X/V X distance from source to the receiver, T total time from the source to the receiver V seismic velocity of the P, S, or R arrival. <ul><li>Initial wave fronts for P, S and R waves , propagating across several receivers at increasing distance from the source. </li></ul>
- 15. Estimates of Seismic Velocity <ul><li>B) The slope of the travel time for each of the P,S, and R arrivals (see earlier figure) is the inverse of velocity. </li></ul><ul><li>The slope of line for each arrival is the first derivative </li></ul><ul><li>( dT/dX ). </li></ul>
- 16. A) A compressional wave , incident upon an interface at an oblique angle , is split into four phases : P and S waves reflected back into the original medium; P and S waves refracted into other medium. Reflected/Refracted Waves
- 17. Model Calculation Simple, Horizontal Two Layers Direct Wave?
- 18. Selected ray path (a) and travel-time curve 9b) for direct wave. The slope, or first derivative, is the reciprocal of the velocity (V 1 ). Direct Wave
- 19. Model Calculation Simple, Horizontal Two Layers Reflected Wave?
- 20. Model Calculation Simple, Horizontal Two Layers Head Wave or Critically Refracted?
- 21. All Three Arrivals
- 22. Ray paths for direct, reflected, and critically refracted waves, arriving at receiver a distance ( X ) from the source. The interface separating velocity ( V 1 ) from velocity ( V 2 ) material is a distance ( h ) below the surface. Ray paths
- 23. Snell’s Law- Critically Refracted Arrival For a wave traveling from material of velocity V 1 into velocity V 2 material, ray paths are refracted according to Snell’s law . i 1 = angle of incidence i 2 = angle of refraction
- 24. <ul><li>Wave fronts are distorted from perfect spheres as energy transmitted into material of different velocity. Ray paths thus bend (“ refract ”) across an interface where velocity changes . </li></ul>The angles for incident and refracted are measured from a line drawn perpendicular to the interface between the two layers. Seismic Refraction
- 25. Behavior of Refracted Ray on Velocity Changes

No public clipboards found for this slide

×
### Save the most important slides with Clipping

Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.

Be the first to comment