FUNCIONES O'hara Gómez Mauramati 1 BT TECNOLÓGICO
ÍNDICE <ul><li>Función logarítmica </li></ul><ul><ul><li>Definición - Fórmula </li></ul></ul><ul><ul><li>Propiedades </li>...
<ul><li>Es la función inversa de la función exponencial ya que genéricamente se expresa como </li></ul>FUNCION LOGARÍTMICA...
x 1/8 1/4 1/2 1 2 4 8 f(x)  3 2 1 0 -1 -2 -3 x 1/8 1/4 1/2 1 2 4 8 f(x)  -3 -2 -1 0 1 2 3 GRÁFICA EJEMPLO
FUNCIÓN TRIGONOMÉTRICA <ul><li>Una función trigonométrica es la que calcula el valor de una razón trigonométrica en funció...
GRÁFICA EJEMPLO
FUNCIÓN RACIONAL <ul><li>La función racional se expresa genéricamente como </li></ul><ul><li>PROPIEDADES </li></ul><ul><li...
GRÁFICA EJEMPLO X Y -5 -6 -4 -5 -3 -4 -2 -2 -1 0 0 Indefinido 1 -4 2 -2 3 0 4 1 5 2 X Y -5 25 -4 15 -3 8 -2 3 -1 1 0 I nde...
BIBLIOGRAFÍA <ul><li>http://personal5.iddeo.es/ztt/Tem/T3_Funcion_Logaritmica.htm </li></ul><ul><li>http://www.hiru.com/es...
Upcoming SlideShare
Loading in …5
×

Funciones

2,652 views

Published on

Definicion, propiedades, tabla y curiosidades de las tres funciones

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
2,652
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
31
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Funciones

  1. 1. FUNCIONES O'hara Gómez Mauramati 1 BT TECNOLÓGICO
  2. 2. ÍNDICE <ul><li>Función logarítmica </li></ul><ul><ul><li>Definición - Fórmula </li></ul></ul><ul><ul><li>Propiedades </li></ul></ul><ul><ul><li>Tabla – Gráfica </li></ul></ul><ul><ul><li>Curiosidades </li></ul></ul><ul><li>Función trigonométrica – seno </li></ul><ul><ul><li>Definición - Fórmula </li></ul></ul><ul><ul><li>Propiedades </li></ul></ul><ul><ul><li>Tabla – Gráfica </li></ul></ul><ul><ul><li>Curiosidades </li></ul></ul><ul><li>Función racional </li></ul><ul><ul><li>Definición - Fórmula </li></ul></ul><ul><ul><li>Propiedades </li></ul></ul><ul><ul><li>Tabla – Gráfica </li></ul></ul><ul><ul><li>Curiosidades </li></ul></ul>
  3. 3. <ul><li>Es la función inversa de la función exponencial ya que genéricamente se expresa como </li></ul>FUNCION LOGARÍTMICA <ul><li>PROPIEDADES </li></ul><ul><li>Sólo existe para valores de x positivos. </li></ul><ul><li>En el punto x = 1 , la función logarítmica se anula, ya que log a 1 = 0 , en cualquier base, por lo que en todas las gráficas aparece el punto (1,0) </li></ul><ul><li>Es continua </li></ul><ul><li>APLICACIONES </li></ul><ul><li>Dentro del campo de las ciencias, los logaritmos son una herramienta fundamental a la hora de resolver ecuaciones, de analizar ciertos fenómenos por medio de la función logarítmica y muchas cosas más. Pero abandonado lo estrictamente matemático, una de les mayores aplicaciones de los logaritmos son las escalas logarítmicas. </li></ul><ul><li>Un ejemplo sobre escalas logarítmicas es: </li></ul><ul><li>La escala para medir la intensidad del sonido. La presión del sonido que llega hasta nuestros oídos se mide en pascales. El intervalo de sonidos que puede percibir el ser humano oscila entre 0'00002 y los 100 pascales. Es un intervalo tan amplio que resulta inmanejable, por lo que se adopta una escala logarítmica expresada en decibeles desde 0 a 180 db . </li></ul>Si 0 < a < 1 la función es estrictamente decreciente Si a > 1 , la función es estrictamente creciente a > 0 y a ≠ 1
  4. 4. x 1/8 1/4 1/2 1 2 4 8 f(x) 3 2 1 0 -1 -2 -3 x 1/8 1/4 1/2 1 2 4 8 f(x) -3 -2 -1 0 1 2 3 GRÁFICA EJEMPLO
  5. 5. FUNCIÓN TRIGONOMÉTRICA <ul><li>Una función trigonométrica es la que calcula el valor de una razón trigonométrica en función del ángulo, y se expresa genéricamente como </li></ul><ul><li>PROPIEDADES </li></ul><ul><li>Se trata de una función periódica, es decir, contiene valores que se reparten cada cierto intervalo. A la longitud del intervalo se le llama período </li></ul><ul><li>Recorrido: [-1,1] </li></ul><ul><li>Continuidad: Es continua en todos los puntos </li></ul><ul><li>Simetría: Simetría impar   </li></ul><ul><li>Periodicidad: Periódica con periodo T = 2p (360º)   </li></ul><ul><li>Puntos de corte con eje Y: En y = 0 </li></ul><ul><li>Puntos de corte con eje X : En x = kp,  (siendo k un número entero)   </li></ul><ul><li>Signo de la función: </li></ul><ul><li>Positiva en (0º, 180º)  (con periodicidad 2p)   </li></ul><ul><li>Negativa en (180º, 360º) (con periodicidad 2p) </li></ul><ul><li>Máximos : En x = 90º + 2k π ,  (siendo k un número entero)   </li></ul><ul><li>Mínimos: En x = 270º + 2k π ,  (siendo k un número entero)   </li></ul><ul><li>CURSIOSIDADES Y APLICACIONES </li></ul><ul><li>Las razones trigonométricas se pueden utilizar, fundamentalmente, para resolver triángulos, así como para resolver diferentes situaciones problemáticas en otras ciencias. Además, son funciones muy utilizadas en las ciencias naturales para analizar fenómenos periódicos tales como: movimiento ondulatorio, corriente eléctrica alterna, cuerdas vibrantes, oscilación de péndulos, ciclos comerciales, movimiento periódico de los planetas, ciclos biológicos, etc. </li></ul><ul><li>En Óptica, en las dispersiones en prisma  o cuando un rayo de luz atraviesa una placa de cierto material. En la  Aviación, si dos aviones parten de una base aérea a la misma velocidad formando un ángulo y siguiendo en trayectorias rectas, se puede determinar la distancia que se encuentran  entre los mismos. El capitán de un barco puede determinar el rumbo equivocado del barco, siempre en línea recta, ordenando modificar el rumbo en grado para dirigirse directamente al punto destino correcto. </li></ul>f(x) = sen x SENO
  6. 6. GRÁFICA EJEMPLO
  7. 7. FUNCIÓN RACIONAL <ul><li>La función racional se expresa genéricamente como </li></ul><ul><li>PROPIEDADES </li></ul><ul><li>Q(x) ≠ 0 </li></ul><ul><li>Dominio: IR, exceptuando aquellos que hacen que el denominador se anule, es decir, que este sea 0. </li></ul><ul><li>Puntos de corte con los ejes : la función f(x) no corta con ninguno de los ejes. </li></ul><ul><li>Simetrías : la función f(x) al ser impar, es simétrica respecto al origen de coordenadas. </li></ul><ul><li>Toda función racional tiene una asíntota vertical y horizontal. </li></ul><ul><li>La grafica de una función racional es una hipérbola. </li></ul><ul><li>APLICACIONES </li></ul><ul><li>Las funciones racionales tienen diversas aplicaciones en el campo del análisis numérico para interpolar o aproximar los resultados de otras funciones más complejas. </li></ul><ul><li>La ley de Boyle-Mariotte afirma que, a una temperatura fija, el producto entre la presión que ejerce un gas y el volumen que ocupa es constante. Es decir: P1· V1= P2·V2, esta relación es una función de proporcionalidad inversa, una de les subcategorías de las racionales </li></ul>Donde P(x) y Q(x) son polinomios
  8. 8. GRÁFICA EJEMPLO X Y -5 -6 -4 -5 -3 -4 -2 -2 -1 0 0 Indefinido 1 -4 2 -2 3 0 4 1 5 2 X Y -5 25 -4 15 -3 8 -2 3 -1 1 0 I ndefinido 1 1 2 3 3 8 4 15 5 14
  9. 9. BIBLIOGRAFÍA <ul><li>http://personal5.iddeo.es/ztt/Tem/T3_Funcion_Logaritmica.htm </li></ul><ul><li>http://www.hiru.com/es/matematika/matematika_03600.html </li></ul><ul><li>http://www.unizar.es/aragon_tres/unidad1/u1logte30.pdf </li></ul><ul><li>http://www.vadenumeros.es/primero/funciones-elementales.htm </li></ul><ul><li>http://www.vitutor.net/2/5/2.html </li></ul><ul><li>Libro de matemáticas de 1ro de bachillerato de Oxford </li></ul>

×