Successfully reported this slideshow.
Your SlideShare is downloading. ×

Artificial Agents Without Ontological Access to Reality

Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Loading in …3
×

Check these out next

1 of 31 Ad

More Related Content

Similar to Artificial Agents Without Ontological Access to Reality (20)

Advertisement

Recently uploaded (20)

Artificial Agents Without Ontological Access to Reality

  1. 1. Ar#ficial  Agents  Without   Ontological  Access  to  Reality   Olivier  Georgeon   h8p://liris.cnrs.fr/ideal/mooc   h8p://liris.cnrs.fr/ideal/mooc   1/31  
  2. 2. Defini#ons   •  Ontology:  “Onto”  (to  be)  +  “Logos”  (discourse):   –  Discourse  on  what  “is”.   •  Agent  without  ontological  access  to  reality:   –  Agent  that  don’t  have  access  to  what  “is”  in  reality.   –  Agent  whose  input  data  is  NOT  a  representa5on  of   reality.   •  We  do  not  consider  input  data  as  the  agent’s  percep#on…   •  …  then  input  data  should  be  considered  as  what?   h8p://liris.cnrs.fr/ideal/mooc   2/31  
  3. 3. Mainstream  philosophy/epistemology   •  Philosophy   –  Kant  :  Cogni#ve  agent’s  don’t  have   access  to  reality  “as  such”     (noumenal  reality).   •  Psychology   –  Findlay  &  Gilchrist  (2003).  Ac#ve  Vision.   •  Cogni#ve  Science.   –  “Percep#on  and  ac#on  arise  together,  dialec#cally  forming  each  other”  (Clancey,  1992,   p5).   •  Construc#vist  epistemology   –  Piaget:  Percep#on  and  ac#on  are  inseparable  (sensorimotor  schemes).   •  Even  quantum  physics?   –  Predicts  results  of  experiments  without  assuming  an  objec#ve  state  of  reality     (talking  about  the  state  of  Schrödinger’s  cat  makes  no  sense)   h8p://liris.cnrs.fr/ideal/mooc   3/31  
  4. 4. Scope  of  this  presenta#on   •  Philosophical  prerequisite:   –  Cogni5ve  agents  have  no  access  to  reality  “as  such”     •  Our  claim:   –  Most  BICAs  and  machine  learning  algorithms  have  not   yet  acknowledged  this  philosophy!   •  Content  of  the  presenta#on:   –  How  can  we  implement  this  philosophy  into  BICAs?   –  What  will  we  gain  and  loose  from  doing  so?   h8p://liris.cnrs.fr/ideal/mooc   4/31  
  5. 5. The  interac#on  cycle   Agent   Environment   Input data Output data The  agent  interacts  with  the   environment  by  receiving   input  data  and  sending  output   data.     When  does  the  interac#on   cycle  begin  and  end?   h8p://liris.cnrs.fr/ideal/mooc   5/31  
  6. 6. Symbolic  modeling   Agent   Seman&c  rules   Reality   Symbol Action The  agent  receives  a  symbol  that   matches  seman5c  rules.       There  is  a  predefined  “discourse  on   what  is”  (the  set  of  symbols  and   seman#c  rules)  and  the  agent  has   access  to  it.       The  agent  is  a  passive  observer  of   reality.  The  cycle  begins  with  the   agent  receiving  input  data  and  ends   with  the  agent  sending  output  data.   h8p://liris.cnrs.fr/ideal/mooc   6/31  
  7. 7. Reinforcement  learning   Agent   Reality   st  ∈ S   Action at ∈ A Observation ot = f (st) ∈ O Reward     rt = r (st) ∈ ℝ There  is  a  predefined  “discourse  on   what  is”  (the  set  S).       Most  reinforcement  learning   algorithms  assume  that  the   observa#on  represents  the  state  of   reality  (par#ally  and  with  noise).       The  agent  is  a  passive  observer  of   reality.  The  cycle  begins  with  the   agent  receiving  input  data  and  ends   with  the  agent  sending  output  data.   h8p://liris.cnrs.fr/ideal/mooc   7/31  
  8. 8. Experiment  /  Result  cycle   Agent   ExperimentResult rt ∈ R xt ∈ X Reality   The  cycle  begins  with  the  agent   sending  output  data  and  ends  with   the  agent  receiving  input  data.     The  agent  is  an  ac#ve  observer  of   reality  (embodiment  paradigm).   h8p://liris.cnrs.fr/ideal/mooc   We  can’t  assume  that  input  data  represent  the  state  of  reality:  it  may  not!   Most  BICAs  and  Machine  learning  algorithms  fail  to  generate  interes#ng   behaviors.   In  a  given  state  of  reality,  rt  varies  depending  on  xt.   8/31  
  9. 9. Comparison   h8p://liris.cnrs.fr/ideal/mooc   Agent   Reality   Agent   Reality   a)  Tradi#onal  model   b)  Embodied  model    a)  and  b)  are  mathema#cally  equivalent  but  :   -­‐  a)  highlights  the  common  assump#on  that  input  data  represents  reality.   -­‐  b)  highlights  that  this  assump#on  may  be  wrong.   9/31   it it ot ot+1
  10. 10. Agents  Without  Ontological  Access  (AWOAs)     are  “indie”  computer  science   •  Ar#ficial  Intelligence  (Russell  &  Norvig  2010,  p.  iv).   –  ”The  problem  of  AI  is  to  build  agents  that  receive  percepts  from  the  environment   and  perform  ac5ons”   –  The  problem  of  AI  is  to  build  agents  that  receive  data  (that  may  not  be  percepts)   from  the  environment  and  make  decisions  (that  may  not  be  ac5ons).   •  Reinforcement  learning:  (Su8on  &  Barto  1998,  p.  4).   –   “Clearly,  such  an  agent  must  be  able  to  sense  the  state  of  the  environment  to  some   extent  and  must  be  able  to  take  ac#ons  that  affect  the  state.  The  agent  also  must   have  goals  rela5ng  to  the  state  of  the  environment.”   –  The  agent  must  have  preferences  (drives)  that  may  not  relate  to  the  state  of  the   environment  “as  such”.   •  AWOAs  relate  to  other  “indie”  approaches  to  AI:   –  Enac#on,  embodied  cogni#on,  developmental  learning,  mul#  agent  systems,  etc.   •  AWOAs  differ  from  tradi#onal  AI  by  design  rather  than  by  technique   –  All  techniques  can  be  used  in  both  ways  (rule  based  systems,  connec#onist,  mul#-­‐ agent  systems,  reinforcement  learning  techniques,  etc.)   h8p://liris.cnrs.fr/ideal/mooc   10/31  
  11. 11. Example   (-­‐3)  (-­‐3)  (-­‐1)   (-­‐1)   (5)   (-­‐10)   Set  E  of  6  experiments:   Set  R  of  2  results:     Set  I  =  E  x  R    of  12  interac#ons  (with  valence):   (-­‐1)   (-­‐1)   (-­‐1)   (-­‐1)   0    or    1   h8p://liris.cnrs.fr/ideal/mooc   The  Agent  /  Environment  coupling  affords  hierarchical  regulari#es   of  interac#on,  e.g.,       -­‐  Amer                ,  experiment              results  more  likely  in              than  in                .   -­‐  Amer                                  ,  sequence                              can  omen  be  enacted.   -­‐  Amer                ,  sequence                                  can  omen  be  enacted.   11/31  
  12. 12. The "Little loop problem" http://liris.cnrs.fr/ideal/mooc Bump:     Touch:     Move  Forward  or  bump                        (5)                      (-­‐10)   Turn  lem  /  right                                                          (-­‐3)   Feel  right/  front  /  lem                                                          (-­‐1)   12/31  
  13. 13. 4.  Afford   Time   6.  Choose   Decision   Time   3.  Ac#vate   5.  Propose   7.  Enact   1.   h8p://liris.cnrs.fr/ideal/mooc   Hierarchical  bo8om-­‐up  sequence  learning   13/31  
  14. 14. ExperimentResult c) Experiment/Result Model r ∈ R x ∈ X Agent   Intended interaction Enacted interaction i = 〈x,r〉 ∈ X×R d) Interactional Model Reality   Agent   Reality   e = 〈x,r’〉 ∈ X×R Interac#onal  model   Embodied models: the agent must use the active capacity of its body to make experiments in order to learn about reality. h8p://liris.cnrs.fr/ideal/mooc   14/31  
  15. 15. Agent Environment Environment “known” at time td ecd ∈ Cd icd ∈ Cd ep1 ip1 ipj ∈ Iepj ∈ I Decisional mechanism Recursive  learning  and  self-­‐ programming   h8p://liris.cnrs.fr/ideal/mooc   15/31  
  16. 16. Ac#vity  analysis   10 20 30 40 50 60 70 80 90 100 100 110 120 130 140 150 160 170 180 190 200 200 210 220 230 240 250 260 270 280 290 300 300 310 320 330 340 350 360 370 380 390 400 touch  front  –     move  forward   (step  74)   70 80 90 100 touch  lem  –     turn  lem  –   move  forward   (Step  186)   40 50 60 70 80 90 100 140 150 160 170 180 190 200 h8p://liris.cnrs.fr/ideal/mooc   16/31  
  17. 17. e-­‐puck  robot  (it  resists  to  noise!)   h8p://liris.cnrs.fr/ideal/mooc   17/31  
  18. 18. It  allows  training   h8p://liris.cnrs.fr/ideal/mooc   18/31  
  19. 19. Rudimentary distal perception !"#$%!% !"#$%&% !"#$%'% ()*+$,%*#-*."/%0#,1% Detects  rela#ve  displacement     of  objects  and  approximate  direc#on     within  180°  span  (area  A,  B,  or  C).     “Likes”  rapprochement.   “Dislikes”  disappearance.   h8p://liris.cnrs.fr/ideal/mooc   19/31  
  20. 20. Self-­‐programming   h8p://liris.cnrs.fr/ideal/mooc   20/31  
  21. 21. No  free  lunch  for  machine  learning   •  It  does  not  violate  the  “no  free  lunch  theorem”   –  Wolpert,  D.H.,  &  Macready,  W.G.  (1997)   •  What  we  loose:   –  It  does  not  learn  to  reach  predefined  goal  states.   •  e.g.,  win  at  chess.   •  What  we  gain   –  It  learns  hierarchical  sa#sfying  habitudes  much  faster.   –  Prac#cal  applica#ons  when  we  need  systems  to  learn  habitudes:   •  e.g,  home  automa#on,  somware  adapta#on,  end-­‐user  programming…   –  Robots  that  interact  with  the  real  world  (without  predefined   model)   –  Theore#cal  applica#ons   •  It  opens  the  way  to  higher-­‐level  cogni#on  (if  we  trust  Kant,  Piaget,  etc.)   h8p://liris.cnrs.fr/ideal/mooc   21/31  
  22. 22. AImergence   h8p://www.oliviergeorgeon.com/aimergence     h8p://liris.cnrs.fr/ideal/mooc   22/31  
  23. 23. Non-­‐Markov  Reinforcement  Learning   Stage 1 Stage 2 Stage 3 40 200 240 320 480 520 640 800 840 -15 -12.5 -10 -7.5 -5 -2.5 0 2.5 o1.a1…  on.an.on+1,  |o1…  on+1∈O  and  a1…  an∈A.     h8p://liris.cnrs.fr/ideal/mooc   23/31  
  24. 24. Blue   phenomenon   White     phenomenon   Level  3   Unknown   1 23 4 5 6 1 ? ? 10 ? ? ? ? 20 ? ? ? ? ? ? ? 30 ? 40 50 60 70 Time   h8p://liris.cnrs.fr/ideal/mooc   24/31  
  25. 25. Agent   Intended Interaction Enacted interaction i = 〈x,r〉 ∈ X×R d) Interactional model Reality   Agent   Intended experience Enacted experience e ∈ E i ∈ E e) Experiential model Reality   e = 〈x,r’〉 ∈ X×R Experien#al  model   It’s a radical inversion of our viewpoint on artificial agent: We focus on the agent’s stream of phenomenological experience 1 23 4 5 6 1 ? ? 10 ? ? ? ? 20 ? ? ? ? ? ? ? 30 ? 40 50 60 70 h8p://liris.cnrs.fr/ideal/mooc   25/31  
  26. 26. Agent   Intended experiences I Σ Enacted experiences E Σ Reality   Spatial displacement 𝜏 Spatial coupling Σ : Experiences with spatial attributes h8p://liris.cnrs.fr/ideal/mooc   26/31  
  27. 27. Interac#on   Timeline   Egocentric  Spa#al     Memory   Hierarchical  Sequen#al  System   Behavior     Selec#on   Intend   Propose   Propose   Learn  /  Track   Ontology   Evoke   Construct   Enact   AGENT   h8p://liris.cnrs.fr/ideal/mooc   27/31  
  28. 28. Spatial Little Loop Problem http://liris.cnrs.fr/ideal/mooc 28/31  
  29. 29. Dynamic  environment   h8p://liris.cnrs.fr/ideal/mooc   29/31  
  30. 30. Robo#cs  research   h8p://liris.cnrs.fr/ideal/mooc   Bumper  tac#le  sensor   Panoramic  camera   Ground  op#c  sensor   h8p://liris.cnrs.fr/simon.gay/index.php?page=eirl&lang=en     30/31  
  31. 31. Conclusion:  a  research  approach   •  Theory  of  ar#ficial  Agents  Without  Ontological  Access  to  reality   (AWOA)  is  under  development.   •  We  design  embodied  models  that  focus  on  the  agent’s  stream  of   phenomenological  experience.   •  We  validate  the  agents  through  behavioral  analysis  rather  then   through  performance  measures.     •  Create  animal-­‐level  intelligence  before  human-­‐level  intelligence.   –  “Animal-­‐level  Turing  test”  based  on  behavioral  analysis?   •  We  (as  a  community)  must  define  criteria  of  intelligent  behavior.     •  Incremental  approach:  imagine  increasingly  difficult  experiments  and   design  smarter  agents  in  parallel.     –  (aimergence  game).   h8p://liris.cnrs.fr/ideal/mooc   31/31  

×