Latinoware: Robots libres e Imprimibles

2,172 views

Published on

En esta charla se presentarán los robots libres e imprimibles. Que un robot sea libre significa que están disponibles todos sus esquemas para que cualquiera los pueda utilizar, estudiar, modificar, distribuir, fabricar o vender. Esto los hace especialmente indicados para entornos educativos. "Imprimible" significa que se pueden fabricar utilizando una impresora 3D open-source. Estos robots tienen la capacidad de que se pueden compartir fácilmente por la comunidad a través de Internet. Esto hace que mejoren y evolucionen. Se presentará el robot Miniskybot, uno de los primeros robots libres e imprimibles y se analizarán los diseños derivados que han creado los estudiantes de la Escuela Politécnica Superior de la Universidad Carlos III de Madrid

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
2,172
On SlideShare
0
From Embeds
0
Number of Embeds
940
Actions
Shares
0
Downloads
24
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • Thanks Prof. Matellan. I am going to start the presentation of my Dissertation which is about the Locomotion of Limbless Modular robots
  • This presentation is divided into 7 parts. First I will introduce the Locomotion problem and the objectives of the dissertation. Second, I will explain the general classification for all the modular robots. Then I will present the central ideas of the dissertation: Locomotion of limbless robots in 1D, 2D and the locomotion of the minimal configurations. Then I will describe some experiments and we will see some videos and simulations. Finally, the conclusions and future work are summarized.
  • This presentation is divided into 7 parts. First I will introduce the Locomotion problem and the objectives of the dissertation. Second, I will explain the general classification for all the modular robots. Then I will present the central ideas of the dissertation: Locomotion of limbless robots in 1D, 2D and the locomotion of the minimal configurations. Then I will describe some experiments and we will see some videos and simulations. Finally, the conclusions and future work are summarized.
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • This presentation is divided into 7 parts. First I will introduce the Locomotion problem and the objectives of the dissertation. Second, I will explain the general classification for all the modular robots. Then I will present the central ideas of the dissertation: Locomotion of limbless robots in 1D, 2D and the locomotion of the minimal configurations. Then I will describe some experiments and we will see some videos and simulations. Finally, the conclusions and future work are summarized.
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • This presentation is divided into 7 parts. First I will introduce the Locomotion problem and the objectives of the dissertation. Second, I will explain the general classification for all the modular robots. Then I will present the central ideas of the dissertation: Locomotion of limbless robots in 1D, 2D and the locomotion of the minimal configurations. Then I will describe some experiments and we will see some videos and simulations. Finally, the conclusions and future work are summarized.
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • This presentation is divided into 7 parts. First I will introduce the Locomotion problem and the objectives of the dissertation. Second, I will explain the general classification for all the modular robots. Then I will present the central ideas of the dissertation: Locomotion of limbless robots in 1D, 2D and the locomotion of the minimal configurations. Then I will describe some experiments and we will see some videos and simulations. Finally, the conclusions and future work are summarized.
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • A big challenge in robotics is the development of a very versatile mobile robot capable of moving on different terrains. As a first approach, the study of locomotion of the mobile robots can be divided into two big leves. The higher level involves the perception of the environment, planning trajectories, navigation and making decisions. The lower level is in charge of the control and coordination of the joints in order to move the robot a step in any direction. This Locomotion lower level is the scope of the dissertation
  • Thanks Prof. Matellan. I am going to start the presentation of my Dissertation which is about the Locomotion of Limbless Modular robots
  • Latinoware: Robots libres e Imprimibles

    1. 1. Robots Libres e Imprimibles Juan González-Gómez y Alberto Valero Gómez, Robotics Lab Universidad Carlos III de Madrid VIII Conferência Latino-Americana de Software Livre 20 de outubro de 2011 - Foz do Iguaçu | PR | Brasil [email_address]
    2. 2. Índice <ul><li>Introducción
    3. 3. El robot Miniskybot
    4. 4. Robots derivados
    5. 5. Plastic Valley UC3M
    6. 6. Conclusiones y trabajos futuros </li></ul>Robots libres e imprimibles Latinoware 2011
    7. 7. Introducción: Robots libres e imprimibles Latinoware 2011 Robótica Libre
    8. 8. Modelo “Open source” <ul><li>El modelo open source funciona
    9. 9. Modelo distribuido, con alcance mundial
    10. 10. Miles de personas cooperando
    11. 11. Aparición de comunidades
    12. 12. Herramientas: repositorios, wikis,...
    13. 13. Patrimonio tecnológico de la humanidad </li></ul>
    14. 14. Robótica Libre (I) <ul><li>Robots desarrollados por la comunidad
    15. 15. Compartidos por Internet
    16. 16. Robots que evolucionan
    17. 17. ¡Emergencia de diseños asombrosos! </li></ul><ul>¿Por qué no aplicar este modelo a la robótica? </ul>Ventajas:
    18. 18. Robótica Libre (II) <ul><li>Los robots son objetos físicos y no “bits” como el software
    19. 19. Se necesita tiempo y dinero para duplicar un objeto físico </li></ul><ul>¿Cómo lo aplicamos? </ul>Problemas: Enfoque: Internet Planos (Bits) Planos (Bits) Compartir Fabricar Objeto físico Convertir a bits Objeto físico
    20. 20. Robótica Libre (III) Software Mecánica Planos mećanicos Electrónica Planos eléctricos Programa Robot físico Robot Libre <ul><li>Robot Libre : Aplicamos las 4 libertades software libre a los planos del robot: Mecánica , electrónica y software </li></ul>void timer0_delay(unsigned char t0ini) { //-- Dar valor inicial del timer TMR0=t0ini; //-- Flag de interrupcion a cero T0IF=0; //-- Esperar a que transcurra el tiempo indicado while(T0IF==0);
    21. 21. Robótica Libre (IV) <ul><li>Robot Libre : Son necesarios los ficheros “fuente” de los planos </li></ul>Software Tool chains Robot físico Robot Libre Herramientas generadoras EDA CAD void timer0_delay(unsigned char t0ini) { //-- Dar valor inicial del timer TMR0=t0ini; //-- Flag de interrupcion a cero T0IF=0; //-- Esperar a que transcurra el tiempo indicado while(T0IF==0);
    22. 22. Herramientas generadoras (I) <ul>¡Las herramientas generadoras imponen restricciones a la compartición! </ul><ul><li>Pago de licencias
    23. 23. Gratis, pero... </li><ul><li>Funcionalidad limitada
    24. 24. Restricciones en el uso </li></ul><li>Restricciones en el Sistema Operativo
    25. 25. Planos en formatos propietarios </li></ul>
    26. 26. Hardware libre² 2 <ul><li>Panos libres
    27. 27. Software propietario </li></ul><ul><li>Panos libres
    28. 28. Software Libre </li></ul><ul><li>El hardware libre lo podemos clasificar en: </li></ul>Hardware libre Hardware libre²
    29. 29. Introducción: Robots libres e imprimibles Latinoware 2011 Impresoras 3D Open Source
    30. 30. Impresoras 3D <ul><li>Impresora 3D : Dispositivo que construye objetos físicos a partir de bits </li></ul><ul><li>Coste: </li><ul><li>Propietarias: 12.000€ - 60.000€
    31. 31. Open source: 350€ - 2.000€ </li></ul></ul><ul><li>Material : Plástico: ABS(26€/kg), PLA(29€/kg) </li></ul>Objeto físico Bits
    32. 32. Ejemplos de Objetos “impresos” <ul><li>Montura de Gafas </li></ul>http://www.thingiverse.com/thing:4110 <ul><li>Cabeza de Darth Vader (Star wars) </li></ul>http://www.thingiverse.com/thing:7215 <ul><li>Catedral gótica </li></ul>http://www.thingiverse.com/thing:7916
    33. 33. Vídeo 1: Una impresora en acción
    34. 34. Impresoras 3D Open source <ul><li>Reprap project : Máquina auto-replicante (2005) </li></ul><ul><li>Thingiverse : Sitio para compartir objetos físicos (2009) </li></ul><ul><li>Makerbot : Comercializan impresoras 3D open-source (2009) </li></ul>
    35. 35. Robots libres e imprimibles para educación <ul><li>Nuestros robots tienen las siguientes características: </li></ul>2 <ul>Diseño disponible para que cualquiera lo pueda usar, estudiar , modificar , distribuir , fabricar o vender </ul><ul>Se pueden fabricar utilizando una impresora 3D open-source </ul><ul>Se ha diseñado exclusivamente utilizando herramientas libres . Esto garantiza que no hay restricciones en su modificación, compartición o fabricación. </ul><ul>Libres </ul><ul>Imprimibles </ul><ul>Herramientas libres </ul>
    36. 36. Índice <ul><li>Introducción
    37. 37. El robot Miniskybot
    38. 38. Robots derivados
    39. 39. Proyecto Plastic Valley UC3M
    40. 40. Conclusiones y trabajos futuros </li></ul>Robots libres e imprimibles Latinoware 2011
    41. 41. Robots previos (I) : Tritt <ul><li>Robot libre
    42. 42. Año: 1997
    43. 43. Mećanica: Piezas de Lego
    44. 44. Electrónica: </li><ul><li>Tarjeta CT6811
    45. 45. Microcontrolador: 68hc11 Motorola </li></ul></ul>http://goo.gl/Z7NZf Problemas : <ul><ul><li>Mecánica “artesanal”, poco clonable
    46. 46. Cada taller de robótica con un diseño nuevo
    47. 47. Dependencia de Lego </li></ul></ul>
    48. 48. Vídeo 2: El robot Tritt
    49. 49. Robots previos (II) : Skybot <ul><li>Robot libre
    50. 50. Año: 2005
    51. 51. Mećanica: Plástico cortado por láser
    52. 52. Electrónica: </li><ul><li>Tarjeta Skypic
    53. 53. Microcontrolador: 16F876A (Microchip) </li></ul><li>Robot clonable </li></ul>Problemas : <ul><li>Los estudiantes NO han evolucionado la mecánica </li></ul>http://goo.gl/cOVYx
    54. 54. Vídeo 3: El robot Skybot
    55. 55. Miniskybot 0.1: “hola mundo” <ul><li>Aprender impresión 3D
    56. 56. Viabilidad de robots imprimibles
    57. 57. Chásis mínimo para estimular a los estudiantes
    58. 58. ¡Que comience la evolución! </li></ul>http://www.thingiverse.com/thing:4954
    59. 59. Miniskybot 1.0 <ul><li>Robot diferencial con rueda loca
    60. 60. Robot completo: chásis + electrónica + pilas + sensores
    61. 61. Los estudiantes lo pueden modificar fácilmente </li></ul>http://www.thingiverse.com/thing:7989
    62. 62. Vídeo 4: El robot Miniskybot 1.0
    63. 63. Mecánica <ul><li>9 piezas imprimibles
    64. 64. Tornillos/tuercas M3
    65. 65. Neumáticos con juntas tóricas </li></ul>
    66. 66. Mecánica: Herramientas Libres de diseño <ul><li>Las piezas son código que al “compilarse” genera las piezas gráficas </li></ul><ul>OpenScad </ul><ul>FreeCad </ul><ul><li>Para visualizar el robot con todas las piezas ensambladas </li></ul>module U_front_skycube() { difference() { union() { //-- Main part: U-piece Futaba_U_union2(bottom_thick=bottom_thick,h=h); //-- Ear 1 translate([d1_x,0,0]) cube(size=[ear_x-0.01,ear_y,bottom_thick], center=true); //-- Ear 2
    67. 67. Diseño paramétrico <ul><li>Las piezas son paramétricas . Simplemente cambiando parámetros en el código se obtienen piezas diferentes </li></ul><ul><li>Ejemplos: </li></ul><ul>Portapilas : </ul><ul><li>Tipo de pila
    68. 68. Número de pilas </li></ul><ul>Ruedas : </ul><ul><li>Diámetro
    69. 69. Grosor
    70. 70. ... </li></ul>
    71. 71. Electrónica (I)
    72. 72. Electrónica (II) <ul><li>Tarjeta Skycube
    73. 73. Diseñada con: KICAD
    74. 74. KICAD es software libre </li></ul>http://goo.gl/HAk5W
    75. 75. Construyendo el Miniskybot <ul><li>Tiempo de impresión: 3h </li></ul>Piezas imprimibles Material no imprimible
    76. 76. Índice <ul><li>Introducción
    77. 77. El robot Miniskybot
    78. 78. Robots derivados
    79. 79. Proyecto Plastic Valley UC3M
    80. 80. Conclusiones y trabajos futuros </li></ul>Robots libres e imprimibles Latinoware 2011
    81. 81. Soporte para sensor IR http://www.thingiverse.com/thing:8950 <ul><li>Sensor de Infrarrojos para el Miniskybot
    82. 82. Autor: Daniel Gómez . Estudiante UC3M </li></ul>
    83. 83. El robot de la barbi <ul><li>Sin comentarios...
    84. 84. Electrónica: Arduino + escudo para motores
    85. 85. Autor: Ávaro Villoslada . Estudiante de Máster UC3M </li></ul>
    86. 86. Primera tele-copia del Miniskybot <ul><li>Autor: Cw Kreimer (Pittsburgh, USA)
    87. 87. Telecopia de Madrid a Pittsbrugh
    88. 88. Modificación de la pieza frontal </li></ul>
    89. 89. Orugator http://www.thingiverse.com/thing:8559 <ul><li>Autores (estudiantes UC3M): </li><ul><ul><li>Olalla Bravo
    90. 90. Daniel Gómez </li></ul></ul><li>Primer robot con orugas imprimibles! </li></ul>
    91. 91. Vídeo 6: Probando orugator (I)
    92. 92. Vídeo 7: Probando orugator (II)
    93. 93. Vídeo 8: Probando orugator (III)
    94. 94. Unitrack <ul><li>Autor: Jon Goitia (Estudiante UC3M)
    95. 95. Una oruga con 5 juntas tóricas en paralelo </li></ul>Video 6 http://www.thingiverse.com/thing:7640
    96. 96. Vídeo 9: Unitrack
    97. 97. F-track <ul><li>Autor: Jon Goitia (Estudiante UC3M)
    98. 98. 4 Unitracks articulados!!!! </li></ul>
    99. 99. Diversificación... <ul><li>No sólo hay evolución...
    100. 100. También diversificación </li></ul>
    101. 101. Índice <ul><li>Introducción
    102. 102. El robot Miniskybot
    103. 103. Robots derivados
    104. 104. Proyecto Plastic Valley UC3M
    105. 105. Conclusiones y trabajos futuros </li></ul>Robots libres e imprimibles Latinoware 2011
    106. 106. Orígenes (I) <ul><li>Febrero 2009 : Taller de Repraps. MediaLab Prado. Madrid </li></ul>Adrian Bowyer (Reprap) Zach Smith (Makerbot)
    107. 107. Orígenes (II) <ul><li>Mayo 2009 : Nuestra Makerbot está funcionando </li></ul>Ricardo Gómez, Andrés Prieto-Moreno y Juan González Makerbot número 8 en el mundo!
    108. 108. MADRE <ul><li>Grupo de Impresoras 3D de la asociación de Robótica de la UC3M
    109. 109. Compramos una Makerbot (Thing-o-matic)
    110. 110. Mayo 2011 : MADRE imprimió su primera pieza </li></ul>http://goo.gl/MGRuf
    111. 111. Los operadores <ul><li>37 Operadores
    112. 112. Todo el mundo tiene acceso a la impresora 3D
    113. 113. Los operadores pueden formar otros operadores </li></ul>
    114. 114. Los Clones <ul><li>Proyecto Clone wars : Imprimiendo impresoras
    115. 115. Las piezas se imprimien en MADRE
    116. 116. Estamos fabricando Repraps (modelo Prusa mendel )
    117. 117. Apuntados 28 grupos! </li></ul>http://goo.gl/OAQtY
    118. 118. En camino... <ul><li>Hay más operadores más en camino …
    119. 119. Alberto Valero ha propuesto el MARS Challenge! </li></ul><ul><li>Propuestas de PFC y trabajos tutelados
    120. 120. Incluir seminarios en el Máster de Robótica de la UC3M
    121. 121. Más universidades Españolas están creando sus “Plastic Valleys”
    122. 122. … y PADRE : Otra Makerbot más </li></ul>http://goo.gl/EPEoR
    123. 123. Índice <ul><li>Introducción
    124. 124. El robot Miniskybot
    125. 125. Robots derivados
    126. 126. Proyecto Plastic Valley UC3M
    127. 127. Conclusiones y trabajos futuros </li></ul>Robots libres e imprimibles Latinoware 2011
    128. 128. Conclusiones <ul><li>Los robots libres e imprimibles funcionan
    129. 129. Telecopia, evolución y diversificación
    130. 130. Sí es posible que aparezcan comunidades de desarrollo de Robots
    131. 131. Geniales para actividades educativas </li></ul>Trabajos futuros <ul><li>Sacar adelante todas nuestras propuestas
    132. 132. OOML : Object Oriented Mechanics Library: </li></ul>Mecánica orientada a Objetos http://iearobotics.com/oomlwiki
    133. 133. Que el plástico os acompañe... ¡Muchas gracias!
    134. 134. Robots Libres e Imprimibles Juan González-Gómez y Alberto Valero Gómez, Robotics Lab Universidad Carlos III de Madrid VIII Conferência Latino-Americana de Software Livre 20 de outubro de 2011 - Foz do Iguaçu | PR | Brasil [email_address]

    ×