Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

X2 T03 01 ellipse (2011)

1,092 views

Published on

Published in: Education
  • u explain soo well.
    Thanks so much...helped heaps
    :)
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Be the first to like this

X2 T03 01 ellipse (2011)

  1. 1. Conics
  2. 2. ConicsThe locus of points whose distance from a fixed point (focus) is amultiple, e, (eccentricity) of its distance from a fixed line (directrix)
  3. 3. ConicsThe locus of points whose distance from a fixed point (focus) is amultiple, e, (eccentricity) of its distance from a fixed line (directrix)
  4. 4. ConicsThe locus of points whose distance from a fixed point (focus) is amultiple, e, (eccentricity) of its distance from a fixed line (directrix) e=0 circle
  5. 5. ConicsThe locus of points whose distance from a fixed point (focus) is amultiple, e, (eccentricity) of its distance from a fixed line (directrix) e=0 circle e<1 ellipse
  6. 6. ConicsThe locus of points whose distance from a fixed point (focus) is amultiple, e, (eccentricity) of its distance from a fixed line (directrix) e=0 circle e<1 ellipse e=1 parabola
  7. 7. ConicsThe locus of points whose distance from a fixed point (focus) is amultiple, e, (eccentricity) of its distance from a fixed line (directrix) e=0 circle e<1 ellipse e=1 parabola e>1 hyperbola
  8. 8. Ellipse (e < 1) y bA’ A-a a x -b
  9. 9. Ellipse (e < 1) y bA’ A-a S a Z x -b
  10. 10. Ellipse (e < 1) y b A’ A -a S a Z x -bSA = eAZ and SA’ = eA’Z
  11. 11. Ellipse (e < 1) y b A’ A -a S a Z x -b SA = eAZ and SA’ = eA’Z(1) SA’ + SA = 2a(2) SA’ – SA = e(A’Z – AZ)
  12. 12. Ellipse (e < 1) y b A’ A -a S a Z x -b SA = eAZ and SA’ = eA’Z(1) SA’ + SA = 2a(2) SA’ – SA = e(A’Z – AZ) = e(AA’) = e(2a) = 2ae
  13. 13. b A’ A -a S a Z x -b(1) + (2); 2SA’ = 2a(1 + e) SA’ = a(1 + e)
  14. 14. b A’ A -a S a Z x -b(1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e)
  15. 15. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e)FocusOS = OA - SA
  16. 16. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e)FocusOS = OA - SA = a – a(1 – e) = ae S  ae,0 
  17. 17. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e)Focus DirectrixOS = OA - SA OZ = OA + AZ = a – a(1 – e) = ae S  ae,0 
  18. 18. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e)Focus DirectrixOS = OA - SA OZ = OA + AZ SA = a – a(1 – e)  OA   SA  eAZ  = ae e S  ae,0 
  19. 19. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e)Focus DirectrixOS = OA - SA OZ = OA + AZ SA = a – a(1 – e)  OA   SA  eAZ  = ae e ae a1  e  S  ae,0    e e a a  directrices x    e e
  20. 20. S ae,0  b PP  x, y  N A’ A -a aN , y a S Z x   e  -b
  21. 21. S ae,0  b PP  x, y  N A’ A -a aN , y a S Z x   e  -b SP  ePN
  22. 22. S ae,0  b PP  x, y  N A’ A -a aN , y a S Z x   e  -b SP  ePN 2 x  ae 2   y  02  e  x     y  y 2 a    e 2 2 a  x  ae   y  e  x   2 2  e
  23. 23. S ae,0  b P P  x, y  N A’ A -a a N , y a S Z x   e  -b SP  ePN 2  x  ae 2   y  02  e  x     y  y 2 a    e 2 2 a  x  ae   y  e  x   2 2  ex 2  2aex  a 2 e 2  y 2  e 2 x 2  2aex  a 2 x 2 1  e 2   y 2  a 2 1  e 2 
  24. 24. S ae,0  b P P  x, y  N A’ A -a a N , y a S Z x   e  -b SP  ePN 2  x  ae 2   y  02  e  x     y  y 2 a    e 2 2 a  x  ae   y  e  x   2 2  ex 2  2aex  a 2 e 2  y 2  e 2 x 2  2aex  a 2 x 2 1  e 2   y 2  a 2 1  e 2  x2 y2  2 1 a a 1  e  2 2
  25. 25. b2when x  0, y  b 1 a 1  e  i.e. 2 2 b 2  a 2 1  e 2 
  26. 26. b2when x  0, y  b 1 a 1  e  i.e. 2 2 b 2  a 2 1  e 2  Ellipse: (a > b) x2 y2 2  2 1 a b where; b 2  a 2 1  e 2  focus :  ae,0  a directrices : x   e e is the eccentricity major semi-axis = a units minor semi-axis = b units
  27. 27. b2when x  0, y  b 1 a 1  e  i.e. 2 2 b 2  a 2 1  e 2  Ellipse: (a > b) x2 y2 Note: If b > a 2  2 1 a b foci on the y axis where; b  a 1  e 2 2 2  a 2  b 2 1  e 2  focus :  ae,0  focus : 0,be  a b directrices : x   directrices : y   e e e is the eccentricity major semi-axis = a units minor semi-axis = b units
  28. 28. b2when x  0, y  b 1 a 1  e  i.e. 2 2 b 2  a 2 1  e 2  Ellipse: (a > b) x2 y2 Note: If b > a 2  2 1 a b foci on the y axis where; b  a 1  e 2 2 2  a 2  b 2 1  e 2  focus :  ae,0  focus : 0,be  a b directrices : x   directrices : y   e e e is the eccentricity major semi-axis = a units Area  ab minor semi-axis = b units
  29. 29. e.g. Find the eccentricity, foci and directrices of the ellipse x2 y2   1 and sketch the ellipse showing all of the important 9 5 features.
  30. 30. e.g. Find the eccentricity, foci and directrices of the ellipse x2 y2   1 and sketch the ellipse showing all of the important 9 5 features. x2 y2  1 9 5 a2  9 a3
  31. 31. e.g. Find the eccentricity, foci and directrices of the ellipse x2 y2   1 and sketch the ellipse showing all of the important 9 5 features. x2 y2  1 b2  5 9 5 a 2 1  e 2   5 a2  9 a3
  32. 32. e.g. Find the eccentricity, foci and directrices of the ellipse x2 y2   1 and sketch the ellipse showing all of the important 9 5 features. x2 y2  1 b2  5 9 5 a 2 1  e 2   5 91  e 2   5 a2  9 a3 5 1 e 2 9 4 e  2 9 2 e 3
  33. 33. e.g. Find the eccentricity, foci and directrices of the ellipse x2 y2   1 and sketch the ellipse showing all of the important 9 5 features. x2 y2  1 b2  5 9 5 a 2 1  e 2   5 91  e 2   5 a2  9 2 a3  eccentricity  5 3 1 e 2 9 foci :  2,0  4 e  2 3 9 directrices : x  3  2 2 e 9 3 x 2
  34. 34. y Auxiliary circle-3 3 x
  35. 35. b 5 y a  3    Auxiliary circle-3 3 x
  36. 36. b 5 y a  3    Auxiliary circle 5-3 3 x  5
  37. 37. b 5 y a  3    Auxiliary circle 5-3 3 x  5
  38. 38. b 5 y a  3    Auxiliary circle 5-3 3 x  5
  39. 39. b 5 y a  3    Auxiliary circle 5-3 3 x  5
  40. 40. b 5 y a  3    Auxiliary circle 5-3 3 x  5
  41. 41. b 5 y a  3    Auxiliary circle 5-3 3 x  5
  42. 42. b 5 y a  3    Auxiliary circle 5-3 3 x  5
  43. 43. b 5 y a  3    Auxiliary circle 5-3 S’(-2,0) S(2,0) 3 x  5
  44. 44. b 5 y a  3    Auxiliary circle 5 -3 S’(-2,0) S(2,0) 3 x  5 9 9x x 2 2
  45. 45. b 5 y a  3    Auxiliary circle 5 -3 S’(-2,0) S(2,0) 3 x  5 9 9 x x 2 2Major axis = 6 units Minor axis  2 5 units
  46. 46. (ii) 9 x 2  4 y 2  18 x  16 y  11  0
  47. 47. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36
  48. 48. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9
  49. 49. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22  1 4 9
  50. 50. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22  1 4 9 centre : (1,2)
  51. 51. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22  1 4 9 centre : (1,2) b2  9 b3
  52. 52. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22  1 4 9 centre : (1,2) b2  9 a 2  b 2 1  e 2  b3 4  91  e 2  5 e 3
  53. 53. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22  1 4 9 centre : (1,2) b2  9 a 2  b 2 1  e 2  b3 4  91  e 2  5 e 3 foci :  1,2  5  9 directrices : y  2  5
  54. 54. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22 Exercise 6A; 1, 2, 3, 5, 7,  1 4 9 8, 9, 11, 13, 15 centre : (1,2) b2  9 a 2  b 2 1  e 2  b3 4  91  e 2  5 e 3 foci :  1,2  5  9 directrices : y  2  5

×