Upcoming SlideShare
×

# X2 T02 02 complex factors

519 views

Published on

0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total views
519
On SlideShare
0
From Embeds
0
Number of Embeds
45
Actions
Shares
0
11
0
Likes
0
Embeds 0
No embeds

No notes for slide

### X2 T02 02 complex factors

1. 1. Factorising Into Complex Factors e.g. Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros, find these zeros and factorise P(x) over the complex field.
2. 2. Factorising Into Complex Factors e.g. Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros, find these zeros and factorise P(x) over the complex field. 1  1  1  1 1 P   4   8   5    3   2   16   8   4  2 0
3. 3. Factorising Into Complex Factors e.g. Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros, find these zeros and factorise P(x) over the complex field. 1  1  1  1 1 P   4   8   5    3   2   16   8   4  2 0  2 x  1 is a factor
4. 4. Factorising Into Complex Factors e.g. Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros, find these zeros and factorise P(x) over the complex field. 1  1  1  1 1 P   4   8   5    3   2   16   8   4  2 0  2 x  1 is a factor P x   2 x  12 x 3  3
5. 5. Factorising Into Complex Factors e.g. Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros, find these zeros and factorise P(x) over the complex field. 1  1  1  1 1 P   4   8   5    3   2   16   8   4  2 0  2 x  1 is a factor P x   2 x  12 x 3  5 x  3
6. 6. Factorising Into Complex Factors e.g. Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros, find these zeros and factorise P(x) over the complex field. 1  1  1  1 1 P   4   8   5    3   2   16   8   4  2 0  2 x  1 is a factor P x   2 x  12 x 3 5x 2  5 x  3
7. 7.   3   2  27   5 9   5  3   3 P         2  8   4  2 0
8. 8.   3   2  27   5 9   5  3   3 P         2  8   4  2 0  2 x  3 is a factor
9. 9.   3   2  27   5 9   5  3   3 P         2  8   4  2 0  2 x  3 is a factor 1 3  rational zeros are and - 2 2
10. 10.   3   2  27   5 9   5  3   3 P         2  8   4  2 0  2 x  3 is a factor 1 3  rational zeros are and - 2 2 P x   2 x  12 x  3x 2  1
11. 11.   3   2  27   5 9   5  3   3 P         2  8   4  2 0  2 x  3 is a factor 1 3 1 3  2 x  6 x  rational zeros are and - 2 2 1 2 x  1  2 x P x   2 x  12 x  3x 2  1
12. 12.   3   2  27   5 9   5  3   3 P         2  8   4  2 0  2 x  3 is a factor 1 3 1 3  2 x  6 x  rational zeros are and - 2 2 1 2 x  1  2 x P x   2 x  12 x  3x 2  1 4x  1 3  ? x  3 x
13. 13.   3   2  27   5 9   5  3   3 P         2  8   4  2 0  2 x  3 is a factor 1 3 1 3  2 x  6 x  rational zeros are and - 2 2 1 2 x  1  2 x P x   2 x  12 x  3x 2  x  1 4x  1 3  ? x  3 x
14. 14.   3   2  27   5 9   5  3   3 P         2  8   4  2 0  2 x  3 is a factor 1 3 1 3  2 x  6 x  rational zeros are and - 2 2 1 2 x  1  2 x P x   2 x  12 x  3x 2  x  1 4x  1  3 2  1 3  ? x  3 x  2 x  12 x  3 x      2  4
15. 15.   3   2  27   5 9   5  3   3 P         2  8   4  2 0  2 x  3 is a factor 1 3 1 3  2 x  6 x  rational zeros are and - 2 2 1 2 x  1  2 x P x   2 x  12 x  3x 2  x  1 4x  1  3 2  1 3  ? x  3 x  2 x  12 x  3 x      2  4  1 3  1 3   2 x  12 x  3 x   i  x   i  2 2  2 2 
16. 16.   3   2  27   5 9   5  3   3 P         2  8   4  2 0  2 x  3 is a factor 1 3 1 3  2 x  6 x  rational zeros are and - 2 2 1 2 x  1  2 x P x   2 x  12 x  3x 2  x  1 4x  1  3 2  1 3  ? x  3 x  2 x  12 x  3 x      2  4  1 3  1 3   2 x  12 x  3 x   i  x   i  2 2  2 2  Exercise 5C; 1 to 15 odds, 16 to 20 all