Upcoming SlideShare
×

# X2 t01 05 conjugate properties (2013)

1,053 views

Published on

Published in: Education
0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total views
1,053
On SlideShare
0
From Embeds
0
Number of Embeds
127
Actions
Shares
0
26
0
Likes
0
Embeds 0
No embeds

No notes for slide

### X2 t01 05 conjugate properties (2013)

1. 1. Properties of Complex Conjugates
2. 2. Properties of Complex Conjugates 1 z  z
3. 3. Properties of Complex Conjugates 1 z  z 2 arg z   arg z
4. 4. Properties of Complex Conjugates 1 z  z 2 arg z   arg z 3 zz  x 2  y 2 z 2
5. 5. Properties of Complex Conjugates 1 z  z 2 arg z   arg z 3 zz  x 2  y 2 z 2 4 z1  z2  z1  z2
6. 6. Properties of Complex Conjugates 1 z  z 5 z1 z2  z1  z2 2 arg z   arg z 3 zz  x 2  y 2 z 2 4 z1  z2  z1  z2
7. 7. Properties of Complex Conjugates 1 z  z 5 z1 z2  z1  z2 2 arg z   arg z 3 zz  x 2  y 2 z 2 4 z1  z2  z1  z2  z1  z1 6     z2  z2
8. 8. Properties of Complex Conjugates 1 z  z 5 z1 z2  z1  z2 2 arg z   arg z 3 zz  x 2  y 2 z  z1  z1 6     z2  z2 2 4 z1  z2  z1  z2 1 z 7   2 z z
9. 9. 6  2i e.g. If x  iy  , show that x 2  y 2  2 3i
10. 10. 6  2i e.g. If x  iy  , show that x 2  y 2  2 3i 6  2i x  iy  3i
11. 11. 6  2i e.g. If x  iy  , show that x 2  y 2  2 3i 6  2i x  iy  3i 6  2i 2  x  iy   1 3i
12. 12. 6  2i e.g. If x  iy  , show that x 2  y 2  2 3i 6  2i x  iy  3i 6  2i 2  x  iy   1 3i  6  2i   x  iy      3i  2
13. 13. 6  2i e.g. If x  iy  , show that x 2  y 2  2 3i 6  2i x  iy  3i 6  2i 2  x  iy   1 3i  6  2i   x  iy      3i  6  2i  3i 2
14. 14. 6  2i e.g. If x  iy  , show that x 2  y 2  2 3i 6  2i x  iy  3i 6  2i 2  x  iy   1 3i  6  2i   x  iy      3i  6  2i  3i 6  2i 2  x  iy   2 3i 2
15. 15. 6  2i e.g. If x  iy  , show that x 2  y 2  2 3i 6  2i x  iy  3i 6  2i 2  x  iy   1 3i Multiply 1  2  6  2i   x  iy      3i  6  2i  3i 6  2i 2  x  iy   2 3i 2
16. 16. 6  2i e.g. If x  iy  , show that x 2  y 2  2 3i 6  2i x  iy  3i 6  2i 2  x  iy   1 3i Multiply 1  2 6  2i 6  2i  x  iy   x  iy    3i 3i 2 2  6  2i   x  iy      3i  6  2i  3i 6  2i 2  x  iy   2 3i 2
17. 17. 6  2i e.g. If x  iy  , show that x 2  y 2  2 3i 6  2i x  iy  3i 6  2i 2  x  iy   1 3i Multiply 1  2 6  2i 6  2i  x  iy   x  iy    3i 3i 36  4 2 2 2 x  y   9 1 4 2 2  6  2i   x  iy      3i  6  2i  3i 6  2i 2  x  iy   2 3i 2
18. 18. 6  2i e.g. If x  iy  , show that x 2  y 2  2 3i 6  2i x  iy  3i 6  2i 2  x  iy   1 3i Multiply 1  2 6  2i 6  2i  x  iy   x  iy    3i 3i 36  4 2 2 2 x  y   9 1 4 x2  y2  2 2 2  6  2i   x  iy      3i  6  2i  3i 6  2i 2  x  iy   2 3i 2
19. 19. 6  2i e.g. If x  iy  , show that x 2  y 2  2 3i 6  2i x  iy  3i 6  2i 2  x  iy   1 3i Multiply 1  2 6  2i 6  2i  x  iy   x  iy    3i 3i 36  4 2 2 2 x  y   9 1 4 x2  y2  2 2  6  2i   x  iy      3i  6  2i  3i 6  2i 2  x  iy   2 3i 2 2 Exercise 4H; 1 to 6