General Expansion ofBinomials
General Expansion ofBinomials kkknxxC 1inoftcoefficientheis
General Expansion ofBinomials kkknxxC 1inoftcoefficientheisknCkn
General Expansion ofBinomials kkknxxC 1inoftcoefficientheis  nnnnnnnxCxCxCCx  22101knCkn
General Expansion ofBinomials kkknxxC 1inoftcoefficientheis  nnnnnnnxCxCxCCx  22101which extends to;  nnnnnn...
General Expansion ofBinomials kkknxxC 1inoftcoefficientheis  nnnnnnnxCxCxCCx  22101 432.. xge which extends...
General Expansion ofBinomials kkknxxC 1inoftcoefficientheis  nnnnnnnxCxCxCCx  22101 432.. xge which extends...
General Expansion ofBinomials kkknxxC 1inoftcoefficientheis  nnnnnnnxCxCxCCx  22101 432.. xge which extends...
Pascal’s Triangle Relationships
Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn
Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx
Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011 ...
Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011 ...
Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011 ...
Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011 ...
Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011 ...
Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011 ...
Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011 ...
Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011 ...
Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011 ...
Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011 ...
Upcoming SlideShare
Loading in …5
×

12 x1 t08 02 general binomial expansions (2013)

644 views

Published on

Published in: Education, Business, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
644
On SlideShare
0
From Embeds
0
Number of Embeds
277
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

12 x1 t08 02 general binomial expansions (2013)

  1. 1. General Expansion ofBinomials
  2. 2. General Expansion ofBinomials kkknxxC 1inoftcoefficientheis
  3. 3. General Expansion ofBinomials kkknxxC 1inoftcoefficientheisknCkn
  4. 4. General Expansion ofBinomials kkknxxC 1inoftcoefficientheis  nnnnnnnxCxCxCCx  22101knCkn
  5. 5. General Expansion ofBinomials kkknxxC 1inoftcoefficientheis  nnnnnnnxCxCxCCx  22101which extends to;  nnnnnnnnnnnnnbCabCbaCbaCaCba   11222110 knCkn
  6. 6. General Expansion ofBinomials kkknxxC 1inoftcoefficientheis  nnnnnnnxCxCxCCx  22101 432.. xge which extends to;  nnnnnnnnnnnnnbCabCbaCbaCaCba   11222110 knCkn
  7. 7. General Expansion ofBinomials kkknxxC 1inoftcoefficientheis  nnnnnnnxCxCxCCx  22101 432.. xge which extends to;  nnnnnnnnnnnnnbCabCbaCbaCaCba   11222110        444334222431440433232322 xCxCxCxCC knCkn
  8. 8. General Expansion ofBinomials kkknxxC 1inoftcoefficientheis  nnnnnnnxCxCxCCx  22101 432.. xge which extends to;  nnnnnnnnnnnnnbCabCbaCbaCaCba   11222110        444334222431440433232322 xCxCxCxCC 432812162169616 xxxx knCkn
  9. 9. Pascal’s Triangle Relationships
  10. 10. Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn
  11. 11. Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx
  12. 12. Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011  nnnkknkknnnxCxCxCxCCx 
  13. 13. Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011  nnnkknkknnnxCxCxCxCCx kxoftscoefficienatlooking
  14. 14. Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011  nnnkknkknnnxCxCxCxCCx kxoftscoefficienatlookingknCLHS
  15. 15. Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011  nnnkknkknnnxCxCxCxCCx kxoftscoefficienatlookingknCLHS
  16. 16. Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011  nnnkknkknnnxCxCxCxCCx kxoftscoefficienatlookingknCLHS      knknCCRHS 11111 
  17. 17. Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011  nnnkknkknnnxCxCxCxCCx kxoftscoefficienatlookingknCLHS      knknCCRHS 11111 knknCC 111 
  18. 18. Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011  nnnkknkknnnxCxCxCxCCx kxoftscoefficienatlookingknCLHS      knknCCRHS 11111 knknCC 111  knknknCCC 111 
  19. 19. Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011  nnnkknkknnnxCxCxCxCCx kxoftscoefficienatlookingknCLHS      knknCCRHS 11111 knknCC 111  knknknCCC 111  l"symmetricaistrianglesPascal"11where2   nkCC knnkn
  20. 20. Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011  nnnkknkknnnxCxCxCxCCx kxoftscoefficienatlookingknCLHS      knknCCRHS 11111 knknCC 111  knknknCCC 111  l"symmetricaistrianglesPascal"11where2   nkCC knnkn  13 0  nnnCC
  21. 21. Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011  nnnkknkknnnxCxCxCxCCx kxoftscoefficienatlookingknCLHS      knknCCRHS 11111 knknCC 111  knknknCCC 111  l"symmetricaistrianglesPascal"11where2   nkCC knnkn  13 0  nnnCCExercise 5B; 2ace, 5, 6ac,10ac, 11, 14

×