Successfully reported this slideshow.
Upcoming SlideShare
×

# 12 x1 t05 03 graphing inverse trig (2012)

1,262 views

Published on

• Full Name
Comment goes here.

Are you sure you want to Yes No
• Unfortunately the NSW HSC does not have statistics in its course and veryt little work on vectors, so sorry about that.

I am pleased, however, that you have found somw of the slideshows useful.

All the best in the IB

Are you sure you want to  Yes  No
• hi nigel, i must say you are an excellent teacher. i am an ib student and i also have some problems with vectors and mainly statistics. if you have any matreial concerning these topics it would be very helpful of you.

Are you sure you want to  Yes  No
• Be the first to like this

### 12 x1 t05 03 graphing inverse trig (2012)

1. 1. Graphing Inverse Trig Functions
2. 2. Graphing Inverse Trig Functions xe.g i  y  5 sin 1 3
3. 3. Graphing Inverse Trig Functions xe.g i  y  5 sin 1 3Domain:  1  x  1 3 3 x  3
4. 4. Graphing Inverse Trig Functions xe.g i  y  5 sin 1 3Domain:  1  x  1 3 3 x  3Range:    y   2 5 2 5 5   y 2 2
5. 5. Graphing Inverse Trig Functions xe.g i  y  5 sin 1 y 3Domain:  1  x  1 5 3 2 3 x  3Range:    y   -3 3 x 2 5 2 5 5 5   y  2 2 2
6. 6. Graphing Inverse Trig Functions xe.g i  y  5 sin 1 y 3 1 xDomain:  1  x  1 5 y  5 sin 3 3 2 3 x  3Range:    y   -3 3 x 2 5 2 5 5 5   y  2 2 2
7. 7. ii  y  tan 1  3  x 2 
8. 8. ii  y  tan 1  3  x 2 Domain: 3  x 2  0  3x 3
9. 9. ii  y  tan 1  3  x 2 Domain: 3  x 2  0  3x 3 Range: x  3, y  tan 1 0 0
10. 10. ii  y  tan 1  3  x 2 Domain: 3  x 2  0  3x 3 Range: x  3, y  tan 1 0 0 x   3, y  tan 1 0 0
11. 11. ii  y  tan 1  3  x 2 Domain: 3  x 2  0  3x 3 Range: x  3, y  tan 1 0 0 x   3, y  tan 1 0 0 x  0, y  tan 1 3   3
12. 12. ii  y  tan 1  3  x 2 Domain: 3  x 2  0  3x 3 Range: x  3, y  tan 1 0 0 x   3, y  tan 1 0 0 x  0, y  tan 1 3   3  0 y 3
13. 13. ii  y  tan 1  3  x 2 Domain: 3  x 2  0  3x 3 y Range: x  3, y  tan 1 0  3 0 x   3, y  tan 1 0 0 x  3 3 x  0, y  tan 1 3   3  0 y 3
14. 14. ii  y  tan 1  3  x 2 Domain: 3  x 2  0  3x 3 y Range: x  3, y  tan 1 0   y  tan 1 3  x 2  3 0 x   3, y  tan 1 0 0 x  3 3 x  0, y  tan 1 3   3  0 y 3
15. 15. (iii ) y  sin 1 sin x
16. 16. (iii ) y  sin 1 sin xDomain:  1  sin x  1 all real x
17. 17. (iii ) y  sin 1 sin xDomain:  1  sin x  1 all real x  Range:   y 2 2
18. 18. (iii ) y  sin 1 sin xDomain:  1  sin x  1 all real x y  Range:   y 2 2  2   x   2
19. 19. (iii ) y  sin 1 sin xDomain:  1  sin x  1 all real x y  Range:   y 2 2  y  sin 1 sin x 2   x   2
20. 20. (iv) y  sin sin 1 x
21. 21. (iv) y  sin sin 1 xDomain:  1  x  1
22. 22. (iv) y  sin sin 1 xDomain:  1  x  1Range: when x  1, y  sin sin 1 1   sin 2 1
23. 23. (iv) y  sin sin 1 xDomain:  1  x  1Range: when x  1, y  sin sin 1 1   sin 2 1 when x  1, y  sin sin 1  1    sin    2  1
24. 24. (iv) y  sin sin 1 xDomain:  1  x  1Range: when x  1, y  sin sin 1 1   sin 2 1 when x  1, y  sin sin 1  1    sin    2  1 when x  0, y  sin sin 1 0  sin 0 0 1  y  1
25. 25. y(iv) y  sin sin 1 xDomain:  1  x  1 1Range: when x  1, y  sin sin 1 1 -1 1 x   sin -1 2 1 when x  1, y  sin sin 1  1    sin    2  1 when x  0, y  sin sin 1 0  sin 0 0 1  y  1
26. 26. y(iv) y  sin sin 1 xDomain:  1  x  1 y  sin sin 1 x 1Range: when x  1, y  sin sin 1 1 -1 1 x   sin -1 2 1 when x  1, y  sin sin 1  1    sin    2  1 when x  0, y  sin sin 1 0  sin 0 0 1  y  1
27. 27. y(iv) y  sin sin 1 xDomain:  1  x  1 y  sin sin 1 x 1Range: when x  1, y  sin sin 1 1 -1 1 x   sin -1 2 1 when x  1, y  sin sin 1  1    sin    2  1 Exercise 1C; 2 to 5ace, when x  0, y  sin sin 1 0 6a b i,iii, 9, 11 to 15  sin 0 0 1  y  1