Upcoming SlideShare
×

# 12 x1 t03 01 arcs & sectors (2012)

613 views

Published on

Published in: Education, Technology
1 Like
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

Views
Total views
613
On SlideShare
0
From Embeds
0
Number of Embeds
193
Actions
Shares
0
19
0
Likes
1
Embeds 0
No embeds

No notes for slide

### 12 x1 t03 01 arcs & sectors (2012)

1. 1. Trigonometric Functions
2. 2. Trigonometric Functions 360  2 radians
3. 3. Trigonometric Functions 360  2 radiansArcs & Sectors
4. 4. Trigonometric Functions 360  2 radiansArcs & Sectors C  2r
5. 5. Trigonometric Functions 360  2 radiansArcs & Sectors C  2r A  r 2
6. 6. Trigonometric Functions 360  2 radiansArcs & Sectors A C  2r A  r 2 O  B
7. 7. Trigonometric Functions 360  2 radiansArcs & Sectors A C  2r A  r 2 O  B AB is an arc
8. 8. Trigonometric Functions 360  2 radiansArcs & Sectors A C  2r A  r 2 O  l B AB is an arc
9. 9. Trigonometric Functions 360  2 radiansArcs & Sectors A C  2r A  r 2  l  2r O  l 2 B AB is an arc
10. 10. Trigonometric Functions 360  2 radiansArcs & Sectors A C  2r A  r 2  l  2r O  l 2 l  r B AB is an arc
11. 11. Trigonometric Functions 360  2 radiansArcs & Sectors A C  2r A  r 2  l  2r O  l 2 l  r B Length of an arc; l  r AB is an arc
12. 12. Trigonometric Functions 360  2 radiansArcs & Sectors A C  2r A  r 2  l  2r O  l 2 l  r B OAB is a sector Length of an arc; l  r AB is an arc
13. 13. Trigonometric Functions 360  2 radiansArcs & Sectors A C  2r A  r 2   l  2r AOAB   r 2 O  l 2 2 l  r B OAB is a sector Length of an arc; l  r AB is an arc
14. 14. Trigonometric Functions 360  2 radiansArcs & Sectors A C  2r A  r 2   l  2r AOAB   r 2 O  l 2 2 l  r 1 B AOAB  r 2 2 OAB is a sector Length of an arc; l  r AB is an arc
15. 15. Trigonometric Functions 360  2 radiansArcs & Sectors A C  2r A  r 2   l  2r AOAB   r 2 O  l 2 2 l  r 1 B AOAB  r 2 2 OAB is a sector Length of an arc; l  r AB is an arc 1 2 Area of a sector; A  r  2
16. 16. e.g. A m 5c 45 O B
17. 17. e.g. A l AB  r m 5c 45 O B
18. 18. e.g. A l AB  r    5  m 4 5c 45 O B
19. 19. e.g. A l AB  r    5  m 4 5c 45 B 5 O  cm 4
20. 20. e.g. 1 l AB  r AOAB  r 2 A 2    5  m 4 5c 45 B 5 O  cm 4
21. 21. e.g. 1 l AB  r AOAB  r 2 A 2   1 2   5   5   m 4   5c 45 2 4 B 5 O  cm 4
22. 22. e.g. 1 l AB  r AOAB  r 2 A 2   1 2   5   5   m 4   5c 45 2 4 B 5 25 O  cm  cm 2 4 8
23. 23. e.g. 1 l AB  r AOAB  r 2 A 2   1 2   5   5   m 4   5c 45 2 4 B 5 25 O  cm  cm 2 4 8 Area minor segment AB 
24. 24. e.g. 1 l AB  r AOAB  r 2 A 2   1 2   5   5   m 4   5c 45 2 4 B 5 25 O  cm  cm 2 4 8 1 1 Area minor segment AB  r 2  r 2 sin  2 2 1 2  r   sin   2
25. 25. e.g. 1 l AB  r AOAB  r 2 A 2   1 2   5   5   m 4   5c 45 2 4 B 5 25 O  cm  cm 2 4 8 1 1 Area minor segment AB  r 2  r 2 sin  2 2 1 2  r   sin   2
26. 26. e.g. 1 l AB  r AOAB  r 2 A 2   1 2   5   5   m 4   5c 45 2 4 B 5 25 O  cm  cm 2 4 8 1 1 Area minor segment AB  r 2  r 2 sin  2 2 1 2  r   sin   2 1 2   5   sin  2 4 4 25   1      2 4 2 25 2  100 2  cm 8 2
27. 27. e.g. 1 l AB  r AOAB  r 2 A 2   1 2   5   5   m 4   5c45 2 4 B 5 25 O  cm  cm 2 4 8 1 1 Area minor segment AB  r 2  r 2 sin  2 2 1 2  r   sin   2 1 2   5   sin  Exercise 14B; 2 to 24 evens, 25, 28* 2 4 4 25   1      2 4 2 25 2  100 2  cm 8 2