Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

11X1 T11 02 quadratics and other methods

531 views

Published on

  • Be the first to comment

  • Be the first to like this

11X1 T11 02 quadratics and other methods

  1. 1. Quadratics and Completing the Square
  2. 2. Quadratics and Completing the Square e.g. Sketch the parabola y  x 2  8 x  12
  3. 3. Quadratics and Completing the Square e.g. Sketch the parabola y  x 2  8 x  12 y  x 2  8 x  12
  4. 4. Quadratics and Completing the Square e.g. Sketch the parabola y  x 2  8 x  12 y  x 2  8 x  12   x  4  4 2
  5. 5. Quadratics and Completing the Square e.g. Sketch the parabola y  x 2  8 x  12 y  x 2  8 x  12   x  4  4 2  vertex is  4, 4 
  6. 6. Quadratics and Completing the Square e.g. Sketch the parabola y  x 2  8 x  12 y  x 2  8 x  12 x intercepts   x  4  4 2  vertex is  4, 4 
  7. 7. Quadratics and Completing the Square e.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts   x  4  4 2  vertex is  4, 4 
  8. 8. Quadratics and Completing the Square e.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4 
  9. 9. Quadratics and Completing the Square e.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2
  10. 10. Quadratics and Completing the Square e.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2
  11. 11. Quadratics and Completing the Square e.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2  x intercepts are  6,0  and  2,0 
  12. 12. Quadratics and Completing the Square e.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2  x intercepts are  6,0  and  2,0  (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)
  13. 13. Quadratics and Completing the Square e.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2  x intercepts are  6,0  and  2,0  (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)   y  k  x  5  3 2
  14. 14. Quadratics and Completing the Square e.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2  x intercepts are  6,0  and  2,0  (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)   y  k  x  5  3 2  2,0  : 0  k  2  5   3 2
  15. 15. Quadratics and Completing the Square e.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2  x intercepts are  6,0  and  2,0  (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)   y  k  x  5  3 2 9k  3  2,0  : 0  k  2  5   3 1 k  2 3
  16. 16. Quadratics and Completing the Square e.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2  x intercepts are  6,0  and  2,0  (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)  2  y  k  x  5  3 9k  3 1  y    x  5  3 3 2     2,0  : 0  k  2  5  3 2 k  1 3
  17. 17. Quadratics and Completing the Square e.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2  x intercepts are  6,0  and  2,0  (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)  2  y  k  x  5  3 9k  3 1  y    x  5  3 3 2     2,0  : 0  k  2  5  3 2 k  1 3 y    x  10 x  16  1 2 3
  18. 18. Quadratics and the Discriminant
  19. 19. Quadratics and the Discriminant   b 2  4ac
  20. 20. Quadratics and the Discriminant   b 2  4ac b  vertex   ,     2a 4a 
  21. 21. Quadratics and the Discriminant   b 2  4ac b  vertex   ,     2a 4a  b   zeroes  2a
  22. 22. Quadratics and the Discriminant   b 2  4ac b  vertex   ,    Note: if   0, no x intercepts  2a 4a  b   zeroes  2a
  23. 23. Quadratics and the Discriminant   b 2  4ac b  vertex   ,    Note: if   0, no x intercepts  2a 4a    0, one x intercept b   zeroes  2a
  24. 24. Quadratics and the Discriminant   b 2  4ac b  vertex   ,    Note: if   0, no x intercepts  2a 4a    0, one x intercept b     0, two x intercepts zeroes  2a
  25. 25. Quadratics and the Discriminant   b 2  4ac b  vertex   ,    Note: if   0, no x intercepts  2a 4a    0, one x intercept b     0, two x intercepts zeroes  2a e.g. Sketch the parabola y  x 2  8 x  12
  26. 26. Quadratics and the Discriminant   b 2  4ac b  vertex   ,    Note: if   0, no x intercepts  2a 4a    0, one x intercept b     0, two x intercepts zeroes  2a e.g. Sketch the parabola y  x 2  8 x  12   82  4 112   16
  27. 27. Quadratics and the Discriminant   b 2  4ac b  vertex   ,    Note: if   0, no x intercepts  2a 4a    0, one x intercept b     0, two x intercepts zeroes  2a e.g. Sketch the parabola y  x 2  8 x  12   82  4 112   16   8 ,  16   vertex     2 4
  28. 28. Quadratics and the Discriminant   b 2  4ac b  vertex   ,    Note: if   0, no x intercepts  2a 4a    0, one x intercept b     0, two x intercepts zeroes  2a e.g. Sketch the parabola y  x 2  8 x  12   82  4 112   16   8 ,  16   vertex     2 4   4, 4 
  29. 29. Quadratics and the Discriminant   b 2  4ac b  vertex   ,    Note: if   0, no x intercepts  2a 4a    0, one x intercept b     0, two x intercepts zeroes  2a e.g. Sketch the parabola y  x 2  8 x  12   82  4 112   16 Exercise 8B; 1cfi, 2bd, 3c, 4b, 6bei, 10b,   8 ,  16  11d, 16, 17, 20*  vertex     2 4 Exercise 8C; 1adg, 2adg, 3ad, 5ac, 8ac,   4, 4  10, 13*

×