Successfully reported this slideshow.
Upcoming SlideShare
×

# 11X1 T03 06 asymptotes (2011)

573 views

Published on

Published in: Education
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

### 11X1 T03 06 asymptotes (2011)

1. 1. Asymptotes
2. 2. AsymptotesCurves always bend towards the asymptotes
3. 3. AsymptotesCurves always bend towards the asymptotesCurves never cross a vertical asymptote
4. 4. AsymptotesCurves always bend towards the asymptotesCurves never cross a vertical asymptoteCurves approach horizontal and oblique asymptotes as x  
5. 5. AsymptotesCurves always bend towards the asymptotesCurves never cross a vertical asymptoteCurves approach horizontal and oblique asymptotes as x   P x  R x  y  Q x   A x  A x 
6. 6. AsymptotesCurves always bend towards the asymptotesCurves never cross a vertical asymptoteCurves approach horizontal and oblique asymptotes as x   P x  R x  y  Q x   A x  A x  solve A(x) = 0 to find vertical asymptotes
7. 7. AsymptotesCurves always bend towards the asymptotesCurves never cross a vertical asymptoteCurves approach horizontal and oblique asymptotes as x   P x  R x  y  Q x   A x  A x  y = Q(x) is the solve A(x) = 0 to find horizontal/oblique vertical asymptotes asymptote
8. 8. AsymptotesCurves always bend towards the asymptotesCurves never cross a vertical asymptoteCurves approach horizontal and oblique asymptotes as x   solve R(x) = 0 to find where (if anywhere) the curve cuts the horizontal/oblique asymptote P x  R x  y  Q x   A x  A x  y = Q(x) is the solve A(x) = 0 to find horizontal/oblique vertical asymptotes asymptote
9. 9. e.g.  i  y   x  3 x  2   x  1 x  1
10. 10. e.g.  i  y   x  3 x  2   x  1 x  1 x2 1 x2  x  6
11. 11. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 x2 1
12. 12. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 x2 1 x 5
13. 13. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 x2 1 x 5 x5 y  1  x  1 x  1
14. 14. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 y x2 1 x 5 x5 y  1  x  1 x  1 x intercepts: (–3,0) , (2,0) –3 2 x
15. 15. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 y x2 1 6 x 5 x5 y  1  x  1 x  1 x intercepts: (–3,0) , (2,0) –3 2 x y intercept: (0,6)
16. 16. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 y x2 1 6 x 5 x5 y  1  x  1 x  1 x intercepts: (–3,0) , (2,0) –3 –1 1 2 x y intercept: (0,6) vertical asymptotes: x  1
17. 17. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 y x2 1 6 x 5 x5 y  1  x  1 x  1 1 x intercepts: (–3,0) , (2,0) –3 –1 1 2 x y intercept: (0,6) vertical asymptotes: x  1 horizontal asymptote: y  1
18. 18. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 y x2 1 6 x 5 x5 y  1  x  1 x  1 1 x intercepts: (–3,0) , (2,0) (5,1) –3 –1 1 2 x y intercept: (0,6) vertical asymptotes: x  1 horizontal asymptote: y  1 cuts horizontal asymptote at x  5
19. 19. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 y x2 1 6 x 5 x5 y  1  x  1 x  1 1 x intercepts: (–3,0) , (2,0) (5,1) –3 –1 1 2 x y intercept: (0,6) vertical asymptotes: x  1 horizontal asymptote: y  1 cuts horizontal asymptote at x  5
20. 20. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 y x2 1 6 x 5 x5 y  1  x  1 x  1 1 x intercepts: (–3,0) , (2,0) (5,1) –3 –1 1 2 x y intercept: (0,6) vertical asymptotes: x  1 horizontal asymptote: y  1 cuts horizontal asymptote at x  5
21. 21. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 y x2 1 6 x 5 x5 y  1  x  1 x  1 1 x intercepts: (–3,0) , (2,0) (5,1) –3 –1 1 2 x y intercept: (0,6) vertical asymptotes: x  1 horizontal asymptote: y  1 cuts horizontal asymptote at x  5
22. 22. e.g.  i  y   x  2  x  1 x  1  x  2  x  3
23. 23. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 2  x  6 x3  2 x 2  x  2
24. 24. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x x 2  x  6 x3  2 x 2  x  2 x3  x 2  6 x
25. 25. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x x 2  x  6 x3  2 x 2  x  2 x3  x 2  6 x  x2  5x  2
26. 26. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 x3  x 2  6 x  x2  5 x  2 2 x  x  6
27. 27. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 x3  x 2  6 x  x2  5 x  2 2 x  x  6 4x  4
28. 28. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 x3  x 2  6 x  x2  5 x  2 2 x  x  6 4x  4 4x  4 y  x 1  x  2  x  3
29. 29. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 y x3  x 2  6 x  x2  5 x  2 2 x  x  6 4x  4 4x  4 y  x 1  x  2  x  3 x intercepts: (–1,0), (1,0), (2,0) –1 1 2 x
30. 30. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 y x3  x 2  6 x  x2  5 x  2 2 x  x  6 4x  4 4x  4 y  x 1  x  2  x  3 x intercepts: (–1,0), (1,0), (2,0) –1 1 1 2 x  y intercept:  0,   1   3  3
31. 31. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 y x3  x 2  6 x  x2  5 x  2 2 x  x  6 4x  4 4x  4 y  x 1  x  2  x  3 x intercepts: (–1,0), (1,0), (2,0) –2 –1 1 1 2 3 x  y intercept:  0,   1   3  3vertical asymptotes: x  2,3
32. 32. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 y x3  x 2  6 x y  x 1  x2  5 x  2 2 x  x  6 4x  4 4x  4 y  x 1  x  2  x  3 x intercepts: (–1,0), (1,0), (2,0) –2 –1 1 1 2 3 x  y intercept:  0,   1   3  3vertical asymptotes: x  2,3oblique asymptote: y  x  1
33. 33. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 y x3  x 2  6 x y  x 1  x2  5 x  2 2 x  x  6 4x  4 4x  4 y  x 1  x  2  x  3 x intercepts: (–1,0), (1,0), (2,0) –2 –1 1 1 2 3 x  y intercept:  0,   1   3  3vertical asymptotes: x  2,3oblique asymptote: y  x  1 cuts horizontal asymptote at x  1
34. 34. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 y x3  x 2  6 x y  x 1  x2  5 x  2 2 x  x  6 4x  4 4x  4 y  x 1  x  2  x  3 x intercepts: (–1,0), (1,0), (2,0) –2 –1 1 1 2 3 x  y intercept:  0,   1   3  3vertical asymptotes: x  2,3oblique asymptote: y  x  1 cuts horizontal asymptote at x  1
35. 35. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 y x3  x 2  6 x y  x 1  x2  5 x  2 2 x  x  6 4x  4 4x  4 y  x 1  x  2  x  3 x intercepts: (–1,0), (1,0), (2,0) –2 –1 1 1 2 3 x  y intercept:  0,   1   3  3vertical asymptotes: x  2,3oblique asymptote: y  x  1 cuts horizontal asymptote at x  1
36. 36. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 y x3  x 2  6 x y  x 1  x2  5 x  2 2 x  x  6 4x  4 4x  4 y  x 1  x  2  x  3 x intercepts: (–1,0), (1,0), (2,0) –2 –1 1 1 2 3 x  y intercept:  0,   1   3  3vertical asymptotes: x  2,3oblique asymptote: y  x  1 cuts horizontal asymptote at x  1
37. 37. Exercise 3G; 3, 6, 8ac, 16cf, 17a