Upcoming SlideShare
×

# 11X1 T03 05 regions in the plane (2011)

503 views

Published on

Published in: Education
0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total views
503
On SlideShare
0
From Embeds
0
Number of Embeds
58
Actions
Shares
0
10
0
Likes
0
Embeds 0
No embeds

No notes for slide

### 11X1 T03 05 regions in the plane (2011)

1. 1. Regions In The PlaneTo draw a region, first you have to sketch the curve.
2. 2. Regions In The PlaneTo draw a region, first you have to sketch the curve.1) If < or > use a dotted line
3. 3. Regions In The PlaneTo draw a region, first you have to sketch the curve.1) If < or > use a dotted line2) If  or  use a solid line
4. 4. Regions In The PlaneTo draw a region, first you have to sketch the curve.1) If < or > use a dotted line2) If  or  use a solid line3) Circle the point of intersection if it is NOT included (i.e. one is < or >)
5. 5. Regions In The PlaneTo draw a region, first you have to sketch the curve.1) If < or > use a dotted line2) If  or  use a solid line3) Circle the point of intersection if it is NOT included (i.e. one is < or >)To calculate the region, test a point NOT on the curve.
6. 6. Regions In The PlaneTo draw a region, first you have to sketch the curve.1) If < or > use a dotted line2) If  or  use a solid line3) Circle the point of intersection if it is NOT included (i.e. one is < or >)To calculate the region, test a point NOT on the curve.e.g. (i ) y  x  3
7. 7. Regions In The PlaneTo draw a region, first you have to sketch the curve.1) If < or > use a dotted line2) If  or  use a solid line3) Circle the point of intersection if it is NOT included (i.e. one is < or >)To calculate the region, test a point NOT on the curve.e.g. (i ) y  x  3 y y  x3 3 –3 x
8. 8. Regions In The PlaneTo draw a region, first you have to sketch the curve.1) If < or > use a dotted line2) If  or  use a solid line3) Circle the point of intersection if it is NOT included (i.e. one is < or >)To calculate the region, test a point NOT on the curve.e.g. (i ) y  x  3 y y  x3 test (0,0) 03 3 –3 x
9. 9. Regions In The PlaneTo draw a region, first you have to sketch the curve.1) If < or > use a dotted line2) If  or  use a solid line3) Circle the point of intersection if it is NOT included (i.e. one is < or >)To calculate the region, test a point NOT on the curve.e.g. (i ) y  x  3 y y  x3 test (0,0) 03 3 –3 x
10. 10. (ii ) x 2  y 2  9
11. 11. (ii ) x 2  y 2  9 y 3 x2  y 2  9 –3 3 x –3
12. 12. (ii ) x 2  y 2  9 y test (0,0) 3 02  02  9 x2  y 2  9 09 –3 3 x –3
13. 13. (ii ) x 2  y 2  9 y test (0,0) 3 02  02  9 x2  y 2  9 09 –3 3 x –3
14. 14. (ii ) y  4  x 2
15. 15. (ii ) y  4  x 2 y 2 y  4  x2 –2 2 x
16. 16. (ii ) y  4  x 2 y test (0,0) 0  40 2 2 y  4  x2 02 –2 2 x
17. 17. (ii ) y  4  x 2 y test (0,0) 0  40 2 2 y  4  x2 02 –2 2 x
18. 18. (ii ) y  4  x 2 y test (0,0) 0  40 2 2 y  4  x2 02 –2 2 x
19. 19. (iv) y  x 2 and y  3 x  4
20. 20. (iv) y  x 2 and y  3 x  4 y y  x2 x
21. 21. (iv) y  x 2 and y  3 x  4 y y  x2 y  x2test (0,1) 0  12 0 1 x
22. 22. (iv) y  x 2 and y  3 x  4 y y  x2 y  x2test (0,1) 0  12 0 1 x
23. 23. (iv) y  x 2 and y  3 x  4 y y  x2 y  x2test (0,1) y  3x  4 0  12 0 1 x
24. 24. (iv) y  x 2 and y  3 x  4 y y  x2 y  x2 y  3x  4test (0,1) test (0,0) y  3x  4 0  12 0 04 0 1 04 x
25. 25. (iv) y  x 2 and y  3 x  4 y y  x2 y  x2 y  3x  4test (0,1) test (0,0) y  3x  4 0  12 0 04 0 1 04 x
26. 26. (iv) y  x 2 and y  3 x  4 y y  x2 y  x2 y  3x  4test (0,1) test (0,0) y  3x  4 0  12 0 04 0 1 04 point of intersection x x 2  3x  4
27. 27. (iv) y  x 2 and y  3 x  4 y y  x2 y  x2 y  3x  4test (0,1) test (0,0) y  3x  4 0  12 0 04 0 1 04 point of intersection x x 2  3x  4 x 2  3x  4  0  x  1 x  4   0 x  1 or x  4
28. 28. (iv) y  x 2 and y  3 x  4 y y  x2 y  x2 y  3x  4test (0,1) test (0,0) y  3x  4 0  12 0 04 (4,16) 0 1 04 (1,1) point of intersection x x 2  3x  4 x 2  3x  4  0  x  1 x  4   0 x  1 or x  4
29. 29. (iv) y  x 2 and y  3 x  4 y y  x2 y  x2 y  3x  4test (0,1) test (0,0) y  3x  4 0  12 0 04 (4,16) 0 1 04 (1,1) point of intersection x x 2  3x  4 x 2  3x  4  0  x  1 x  4   0 x  1 or x  4 Exercise 3F; 3ac, 4d, 5cg, 6cd, 7, 10, 12a, 15a, 19, 20, 21a, 23*
30. 30. (iv) y  x 2 and y  3 x  4 y y  x2 y  x2 y  3x  4test (0,1) test (0,0) y  3x  4 0  12 0 04 (4,16) 0 1 04 (1,1) point of intersection x x 2  3x  4 x 2  3x  4  0  x  1 x  4   0 x  1 or x  4