Upcoming SlideShare
×

# 11 x1 t10 03 equations reducible to quadratics (2013)

503 views

Published on

Published in: Education
0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total views
503
On SlideShare
0
From Embeds
0
Number of Embeds
220
Actions
Shares
0
15
0
Likes
0
Embeds 0
No embeds

No notes for slide

### 11 x1 t10 03 equations reducible to quadratics (2013)

1. 1. Equations Reducible To Quadratics
2. 2. Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  
3. 3. Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x
4. 4. Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x
5. 5. Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m  
6. 6. Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  
7. 7. Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  
8. 8. Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  
9. 9. Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x  
10. 10. Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions
11. 11. Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x  
12. 12. Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x   ( ) 9 4 3 3 0x xii   
13. 13. Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x   ( ) 9 4 3 3 0x xii   let 3xm 
14. 14. Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x   ( ) 9 4 3 3 0x xii   let 3xm    22 2 23 3 3 9xx x xm    
15. 15. Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x   ( ) 9 4 3 3 0x xii   let 3xm    22 2 23 3 3 9xx x xm    24 3 0m m  
16. 16. Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x   ( ) 9 4 3 3 0x xii   let 3xm    22 2 23 3 3 9xx x xm    24 3 0m m    3 1 0m m  
17. 17. Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x   ( ) 9 4 3 3 0x xii   let 3xm    22 2 23 3 3 9xx x xm    24 3 0m m    3 1 0m m  3 or 1m m 
18. 18. Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x   ( ) 9 4 3 3 0x xii   let 3xm    22 2 23 3 3 9xx x xm    24 3 0m m    3 1 0m m  3 or 1m m 3 3 or 3 1x x 
19. 19. Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x   ( ) 9 4 3 3 0x xii   let 3xm    22 2 23 3 3 9xx x xm    24 3 0m m    3 1 0m m  3 or 1m m 3 3 or 3 1x x 1x 
20. 20. Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x   ( ) 9 4 3 3 0x xii   let 3xm    22 2 23 3 3 9xx x xm    24 3 0m m    3 1 0m m  3 or 1m m 3 3 or 3 1x x 1x  or 0x 
21. 21. Exercise 8D; 1, 2ad, 3b, 4ab, 5ac, 6a, 8abi, 9a*