11 x1 t10 02 quadratics and other methods (2012)

715 views

Published on

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
715
On SlideShare
0
From Embeds
0
Number of Embeds
326
Actions
Shares
0
Downloads
13
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

11 x1 t10 02 quadratics and other methods (2012)

  1. 1. Quadratics and Completing the Square
  2. 2. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12
  3. 3. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12 y  x 2  8 x  12
  4. 4. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12 y  x 2  8 x  12   x  4  4 2
  5. 5. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12 y  x 2  8 x  12   x  4  4 2  vertex is  4, 4 
  6. 6. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12 y  x 2  8 x  12 x intercepts   x  4  4 2  vertex is  4, 4 
  7. 7. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts   x  4  4 2  vertex is  4, 4 
  8. 8. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4 
  9. 9. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2
  10. 10. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2
  11. 11. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2  x intercepts are  6,0  and  2,0 
  12. 12. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2  x intercepts are  6,0  and  2,0  (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)
  13. 13. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2  x intercepts are  6,0  and  2,0  (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)   y  k  x  5  3 2
  14. 14. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2  x intercepts are  6,0  and  2,0  (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)   y  k  x  5  3 2 2,0  : 0  k  2  5   3 2
  15. 15. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2  x intercepts are  6,0  and  2,0  (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)   y  k  x  5  3 2 9k  3 2,0  : 0  k  2  5   3 1 k  2 3
  16. 16. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2  x intercepts are  6,0  and  2,0 (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)  2  y  k  x  5  3 9k  3 1  y    x  5  3 3 2    2,0  : 0  k  2  5  3 2 k  1 3
  17. 17. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2  x intercepts are  6,0  and  2,0 (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)  2  y  k  x  5  3 9k  3 1  y    x  5  3 3 2    2,0  : 0  k  2  5  3 2 k  1 3 y    x  10 x  16  1 2 3
  18. 18. Quadratics and the Discriminant
  19. 19. Quadratics and the Discriminant   b 2  4ac
  20. 20. Quadratics and the Discriminant   b 2  4ac  b ,  vertex     2a 4a 
  21. 21. Quadratics and the Discriminant   b 2  4ac  b ,  vertex     2a 4a  b  zeroes  2a
  22. 22. Quadratics and the Discriminant   b 2  4ac  b ,  vertex   Note: if   0, no x intercepts   2a 4a  b  zeroes  2a
  23. 23. Quadratics and the Discriminant   b 2  4ac  b ,  vertex   Note: if   0, no x intercepts   2a 4a    0, one x intercept b  zeroes  2a
  24. 24. Quadratics and the Discriminant   b 2  4ac  b ,  vertex   Note: if   0, no x intercepts   2a 4a    0, one x intercept b     0, two x interceptszeroes  2a
  25. 25. Quadratics and the Discriminant   b 2  4ac  b ,   vertex   Note: if   0, no x intercepts   2a 4a    0, one x intercept b     0, two x intercepts zeroes  2ae.g. Sketch the parabola y  x 2  8 x  12
  26. 26. Quadratics and the Discriminant   b 2  4ac  b ,   vertex   Note: if   0, no x intercepts   2a 4a    0, one x intercept b     0, two x intercepts zeroes  2ae.g. Sketch the parabola y  x 2  8 x  12  82  4 112   16
  27. 27. Quadratics and the Discriminant   b 2  4ac  b ,   vertex   Note: if   0, no x intercepts   2a 4a    0, one x intercept b     0, two x intercepts zeroes  2a e.g. Sketch the parabola y  x 2  8 x  12   82  4 112   16   8 ,  16  vertex     2 4
  28. 28. Quadratics and the Discriminant   b 2  4ac  b ,   vertex   Note: if   0, no x intercepts   2a 4a    0, one x intercept b     0, two x intercepts zeroes  2a e.g. Sketch the parabola y  x 2  8 x  12   82  4 112   16   8 ,  16  vertex     2 4   4, 4 
  29. 29. Quadratics and the Discriminant   b 2  4ac  b ,   vertex   Note: if   0, no x intercepts   2a 4a    0, one x intercept b     0, two x intercepts zeroes  2a e.g. Sketch the parabola y  x 2  8 x  12   82  4 112   16 Exercise 8B; 1cfi, 2bd, 3c, 4b, 6bei, 10b,   8 ,  16  11d, 16, 17, 20* vertex     2 4 Exercise 8C; 1adg, 2adg, 3ad, 5ac, 8ac,   4, 4  10, 13*

×