Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

11 X1 T04 14 Products To Sums Etc

607 views

Published on

Published in: Education, Business, Technology
  • Be the first to comment

  • Be the first to like this

11 X1 T04 14 Products To Sums Etc

  1. 1. Products to Sums
  2. 2. Products to Sums 2sin A cos B = sin ( A + B ) + sin ( A − B )
  3. 3. Products to Sums 2sin A cos B = sin ( A + B ) + sin ( A − B ) 2cos A cos B = cos ( A + B ) + cos ( A − B )
  4. 4. Products to Sums 2sin A cos B = sin ( A + B ) + sin ( A − B ) 2cos A cos B = cos ( A + B ) + cos ( A − B ) 2sin A sin B = cos ( A − B ) − cos ( A + B )
  5. 5. Products to Sums 2sin A cos B = sin ( A + B ) + sin ( A − B ) 2cos A cos B = cos ( A + B ) + cos ( A − B ) 2sin A sin B = cos ( A − B ) − cos ( A + B ) eg (i) Express as a sum or difference of trig functions
  6. 6. Products to Sums 2sin A cos B = sin ( A + B ) + sin ( A − B ) 2cos A cos B = cos ( A + B ) + cos ( A − B ) 2sin A sin B = cos ( A − B ) − cos ( A + B ) eg (i) Express as a sum or difference of trig functions a ) 2cos5 x sin x
  7. 7. Products to Sums 2sin A cos B = sin ( A + B ) + sin ( A − B ) 2cos A cos B = cos ( A + B ) + cos ( A − B ) 2sin A sin B = cos ( A − B ) − cos ( A + B ) eg (i) Express as a sum or difference of trig functions a ) 2cos5 x sin x = 2sin x cos5 x
  8. 8. Products to Sums 2sin A cos B = sin ( A + B ) + sin ( A − B ) 2cos A cos B = cos ( A + B ) + cos ( A − B ) 2sin A sin B = cos ( A − B ) − cos ( A + B ) eg (i) Express as a sum or difference of trig functions a ) 2cos5 x sin x = 2sin x cos5 x = sin ( x + 5 x ) + sin ( x − 5 x )
  9. 9. Products to Sums 2sin A cos B = sin ( A + B ) + sin ( A − B ) 2cos A cos B = cos ( A + B ) + cos ( A − B ) 2sin A sin B = cos ( A − B ) − cos ( A + B ) eg (i) Express as a sum or difference of trig functions a ) 2cos5 x sin x = 2sin x cos5 x = sin ( x + 5 x ) + sin ( x − 5 x ) = sin 6 x + sin ( −4 x )
  10. 10. Products to Sums 2sin A cos B = sin ( A + B ) + sin ( A − B ) 2cos A cos B = cos ( A + B ) + cos ( A − B ) 2sin A sin B = cos ( A − B ) − cos ( A + B ) eg (i) Express as a sum or difference of trig functions a ) 2cos5 x sin x = 2sin x cos5 x = sin ( x + 5 x ) + sin ( x − 5 x ) = sin 6 x + sin ( −4 x ) = sin 6 x − sin 4 x
  11. 11. Products to Sums 2sin A cos B = sin ( A + B ) + sin ( A − B ) 2cos A cos B = cos ( A + B ) + cos ( A − B ) 2sin A sin B = cos ( A − B ) − cos ( A + B ) eg (i) Express as a sum or difference of trig functions a ) 2cos5 x sin x = 2sin x cos5 x = sin ( x + 5 x ) + sin ( x − 5 x ) = sin 6 x + sin ( −4 x ) = sin 6 x − sin 4 x b) cos3θ cos5θ
  12. 12. Products to Sums 2sin A cos B = sin ( A + B ) + sin ( A − B ) 2cos A cos B = cos ( A + B ) + cos ( A − B ) 2sin A sin B = cos ( A − B ) − cos ( A + B ) eg (i) Express as a sum or difference of trig functions a ) 2cos5 x sin x = 2sin x cos5 x = sin ( x + 5 x ) + sin ( x − 5 x ) = sin 6 x + sin ( −4 x ) = sin 6 x − sin 4 x 1 = ( 2cos3θ cos5θ ) b) cos3θ cos5θ 2
  13. 13. Products to Sums 2sin A cos B = sin ( A + B ) + sin ( A − B ) 2cos A cos B = cos ( A + B ) + cos ( A − B ) 2sin A sin B = cos ( A − B ) − cos ( A + B ) eg (i) Express as a sum or difference of trig functions a ) 2cos5 x sin x = 2sin x cos5 x = sin ( x + 5 x ) + sin ( x − 5 x ) = sin 6 x + sin ( −4 x ) = sin 6 x − sin 4 x 1 = ( 2cos3θ cos5θ ) b) cos3θ cos5θ 2 1 = ( cos ( 3θ + 5θ ) + cos ( 3θ − 5θ ) ) 2
  14. 14. Products to Sums 2sin A cos B = sin ( A + B ) + sin ( A − B ) 2cos A cos B = cos ( A + B ) + cos ( A − B ) 2sin A sin B = cos ( A − B ) − cos ( A + B ) eg (i) Express as a sum or difference of trig functions a ) 2cos5 x sin x = 2sin x cos5 x = sin ( x + 5 x ) + sin ( x − 5 x ) = sin 6 x + sin ( −4 x ) = sin 6 x − sin 4 x 1 = ( 2cos3θ cos5θ ) b) cos3θ cos5θ 2 1 = ( cos ( 3θ + 5θ ) + cos ( 3θ − 5θ ) ) 2 1 = ( cos8θ + cos ( −2θ ) ) 2
  15. 15. Products to Sums 2sin A cos B = sin ( A + B ) + sin ( A − B ) 2cos A cos B = cos ( A + B ) + cos ( A − B ) 2sin A sin B = cos ( A − B ) − cos ( A + B ) eg (i) Express as a sum or difference of trig functions a ) 2cos5 x sin x = 2sin x cos5 x = sin ( x + 5 x ) + sin ( x − 5 x ) = sin 6 x + sin ( −4 x ) = sin 6 x − sin 4 x 1 = ( 2cos3θ cos5θ ) b) cos3θ cos5θ 2 1 = ( cos ( 3θ + 5θ ) + cos ( 3θ − 5θ ) ) 2 1 1 = ( cos8θ + cos 2θ ) = ( cos8θ + cos ( −2θ ) ) 2 2
  16. 16. (ii) Evaluate 2sin 45o cos15o
  17. 17. (ii) Evaluate 2sin 45o cos15o = sin ( 45 + 15 ) + sin ( 45 − 15 )
  18. 18. (ii) Evaluate 2sin 45o cos15o = sin ( 45 + 15 ) + sin ( 45 − 15 ) = sin 60o + sin 30o
  19. 19. (ii) Evaluate 2sin 45o cos15o = sin ( 45 + 15 ) + sin ( 45 − 15 ) = sin 60o + sin 30o 31 = + 22
  20. 20. (ii) Evaluate 2sin 45o cos15o = sin ( 45 + 15 ) + sin ( 45 − 15 ) = sin 60o + sin 30o 31 = + 22 3 +1 = 2
  21. 21. (ii) Evaluate 2sin 45o cos15o = sin ( 45 + 15 ) + sin ( 45 − 15 ) = sin 60o + sin 30o 31 = + 22 3 +1 = 2 Sums to Products
  22. 22. (ii) Evaluate 2sin 45o cos15o = sin ( 45 + 15 ) + sin ( 45 − 15 ) = sin 60o + sin 30o 31 = + 22 3 +1 = 2 Sums to Products 1 1 sin A + sin B = 2sin ( A + B ) cos ( A − B ) 2 2
  23. 23. (ii) Evaluate 2sin 45o cos15o = sin ( 45 + 15 ) + sin ( 45 − 15 ) = sin 60o + sin 30o 31 = + 22 3 +1 = 2 Sums to Products 1 1 sin A + sin B = 2sin ( A + B ) cos ( A − B ) (2 sine half sum cos half diff) 2 2
  24. 24. (ii) Evaluate 2sin 45o cos15o = sin ( 45 + 15 ) + sin ( 45 − 15 ) = sin 60o + sin 30o 31 = + 22 3 +1 = 2 Sums to Products 1 1 sin A + sin B = 2sin ( A + B ) cos ( A − B ) (2 sine half sum cos half diff) 2 2 1 1 cos A + cos B = 2cos ( A + B ) cos ( A − B ) 2 2
  25. 25. (ii) Evaluate 2sin 45o cos15o = sin ( 45 + 15 ) + sin ( 45 − 15 ) = sin 60o + sin 30o 31 = + 22 3 +1 = 2 Sums to Products 1 1 sin A + sin B = 2sin ( A + B ) cos ( A − B ) (2 sine half sum cos half diff) 2 2 1 1 cos A + cos B = 2cos ( A + B ) cos ( A − B ) (2 cos half sum cos half diff) 2 2
  26. 26. (ii) Evaluate 2sin 45o cos15o = sin ( 45 + 15 ) + sin ( 45 − 15 ) = sin 60o + sin 30o 31 = + 22 3 +1 = 2 Sums to Products 1 1 sin A + sin B = 2sin ( A + B ) cos ( A − B ) (2 sine half sum cos half diff) 2 2 1 1 cos A + cos B = 2cos ( A + B ) cos ( A − B ) (2 cos half sum cos half diff) 2 2 1 1 cos A − cos B = −2sin ( A + B ) sin ( A − B ) 2 2
  27. 27. (ii) Evaluate 2sin 45o cos15o = sin ( 45 + 15 ) + sin ( 45 − 15 ) = sin 60o + sin 30o 31 = + 22 3 +1 = 2 Sums to Products 1 1 sin A + sin B = 2sin ( A + B ) cos ( A − B ) (2 sine half sum cos half diff) 2 2 1 1 cos A + cos B = 2cos ( A + B ) cos ( A − B ) (2 cos half sum cos half diff) 2 2 1 1 cos A − cos B = −2sin ( A + B ) sin ( A − B ) (minus 2 sine half sum 2 2 sine half diff)
  28. 28. eg (i) Convert into products of trig functions
  29. 29. eg (i) Convert into products of trig functions a ) cos3 A − cos5 A
  30. 30. eg (i) Convert into products of trig functions 1 1 a ) cos3 A − cos5 A = −2sin ( 8 A ) sin ( −2 A ) 2 2
  31. 31. eg (i) Convert into products of trig functions 1 1 a ) cos3 A − cos5 A = −2sin ( 8 A ) sin ( −2 A ) 2 2 = −2sin 4 A sin ( − A )
  32. 32. eg (i) Convert into products of trig functions 1 1 a ) cos3 A − cos5 A = −2sin ( 8 A ) sin ( −2 A ) 2 2 = −2sin 4 A sin ( − A ) = 2sin 4 A sin A
  33. 33. eg (i) Convert into products of trig functions 1 1 a ) cos3 A − cos5 A = −2sin ( 8 A ) sin ( −2 A ) 2 2 = −2sin 4 A sin ( − A ) = 2sin 4 A sin A b) sin 6 x − sin 4 x
  34. 34. eg (i) Convert into products of trig functions 1 1 a ) cos3 A − cos5 A = −2sin ( 8 A ) sin ( −2 A ) 2 2 = −2sin 4 A sin ( − A ) = 2sin 4 A sin A b) sin 6 x − sin 4 x = sin 6 x + sin ( −4 x )
  35. 35. eg (i) Convert into products of trig functions 1 1 a ) cos3 A − cos5 A = −2sin ( 8 A ) sin ( −2 A ) 2 2 = −2sin 4 A sin ( − A ) = 2sin 4 A sin A b) sin 6 x − sin 4 x = sin 6 x + sin ( −4 x ) 1 1 = 2sin ( 2 x ) cos ( 10 x ) 2 2
  36. 36. eg (i) Convert into products of trig functions 1 1 a ) cos3 A − cos5 A = −2sin ( 8 A ) sin ( −2 A ) 2 2 = −2sin 4 A sin ( − A ) = 2sin 4 A sin A b) sin 6 x − sin 4 x = sin 6 x + sin ( −4 x ) 1 1 = 2sin ( 2 x ) cos ( 10 x ) 2 2 = 2sin x cos5 x
  37. 37. eg (i) Convert into products of trig functions 1 1 a ) cos3 A − cos5 A = −2sin ( 8 A ) sin ( −2 A ) 2 2 = −2sin 4 A sin ( − A ) = 2sin 4 A sin A b) sin 6 x − sin 4 x = sin 6 x + sin ( −4 x ) 1 1 = 2sin ( 2 x ) cos ( 10 x ) 2 2 = 2sin x cos5 x (ii) Solve sin x + sin 3 x = 0 0o ≤ x ≤ 360o
  38. 38. eg (i) Convert into products of trig functions 1 1 a ) cos3 A − cos5 A = −2sin ( 8 A ) sin ( −2 A ) 2 2 = −2sin 4 A sin ( − A ) = 2sin 4 A sin A b) sin 6 x − sin 4 x = sin 6 x + sin ( −4 x ) 1 1 = 2sin ( 2 x ) cos ( 10 x ) 2 2 = 2sin x cos5 x (ii) Solve sin x + sin 3 x = 0 0o ≤ x ≤ 360o 2sin 2 x cos ( − x ) = 0
  39. 39. eg (i) Convert into products of trig functions 1 1 a ) cos3 A − cos5 A = −2sin ( 8 A ) sin ( −2 A ) 2 2 = −2sin 4 A sin ( − A ) = 2sin 4 A sin A b) sin 6 x − sin 4 x = sin 6 x + sin ( −4 x ) 1 1 = 2sin ( 2 x ) cos ( 10 x ) 2 2 = 2sin x cos5 x (ii) Solve sin x + sin 3 x = 0 0o ≤ x ≤ 360o 2sin 2 x cos ( − x ) = 0 2sin 2 x cos x = 0
  40. 40. eg (i) Convert into products of trig functions 1 1 a ) cos3 A − cos5 A = −2sin ( 8 A ) sin ( −2 A ) 2 2 = −2sin 4 A sin ( − A ) = 2sin 4 A sin A b) sin 6 x − sin 4 x = sin 6 x + sin ( −4 x ) 1 1 = 2sin ( 2 x ) cos ( 10 x ) 2 2 = 2sin x cos5 x (ii) Solve sin x + sin 3 x = 0 0o ≤ x ≤ 360o 2sin 2 x cos ( − x ) = 0 2sin 2 x cos x = 0 sin 2 x = 0 cos x = 0 or
  41. 41. eg (i) Convert into products of trig functions 1 1 a ) cos3 A − cos5 A = −2sin ( 8 A ) sin ( −2 A ) 2 2 = −2sin 4 A sin ( − A ) = 2sin 4 A sin A b) sin 6 x − sin 4 x = sin 6 x + sin ( −4 x ) 1 1 = 2sin ( 2 x ) cos ( 10 x ) 2 2 = 2sin x cos5 x (ii) Solve sin x + sin 3 x = 0 0o ≤ x ≤ 360o 2sin 2 x cos ( − x ) = 0 2sin 2 x cos x = 0 sin 2 x = 0 cos x = 0 or 2 x = 0o ,180o ,360o ,540o ,720o
  42. 42. eg (i) Convert into products of trig functions 1 1 a ) cos3 A − cos5 A = −2sin ( 8 A ) sin ( −2 A ) 2 2 = −2sin 4 A sin ( − A ) = 2sin 4 A sin A b) sin 6 x − sin 4 x = sin 6 x + sin ( −4 x ) 1 1 = 2sin ( 2 x ) cos ( 10 x ) 2 2 = 2sin x cos5 x (ii) Solve sin x + sin 3 x = 0 0o ≤ x ≤ 360o 2sin 2 x cos ( − x ) = 0 2sin 2 x cos x = 0 sin 2 x = 0 cos x = 0 or 2 x = 0o ,180o ,360o ,540o ,720o x = 0o ,90o ,180o , 270o ,360o
  43. 43. eg (i) Convert into products of trig functions 1 1 a ) cos3 A − cos5 A = −2sin ( 8 A ) sin ( −2 A ) 2 2 = −2sin 4 A sin ( − A ) = 2sin 4 A sin A b) sin 6 x − sin 4 x = sin 6 x + sin ( −4 x ) 1 1 = 2sin ( 2 x ) cos ( 10 x ) 2 2 = 2sin x cos5 x (ii) Solve sin x + sin 3 x = 0 0o ≤ x ≤ 360o 2sin 2 x cos ( − x ) = 0 2sin 2 x cos x = 0 sin 2 x = 0 cos x = 0 or x = 90o , 270o 2 x = 0o ,180o ,360o ,540o ,720o x = 0o ,90o ,180o , 270o ,360o
  44. 44. eg (i) Convert into products of trig functions 1 1 a ) cos3 A − cos5 A = −2sin ( 8 A ) sin ( −2 A ) 2 2 = −2sin 4 A sin ( − A ) = 2sin 4 A sin A b) sin 6 x − sin 4 x = sin 6 x + sin ( −4 x ) 1 1 = 2sin ( 2 x ) cos ( 10 x ) 2 2 = 2sin x cos5 x (ii) Solve sin x + sin 3 x = 0 0o ≤ x ≤ 360o 2sin 2 x cos ( − x ) = 0 2sin 2 x cos x = 0 sin 2 x = 0 cos x = 0 or x = 90o , 270o 2 x = 0o ,180o ,360o ,540o ,720o x = 0o ,90o ,180o , 270o ,360o ∴ x = 0o ,90o ,180o , 270o ,360o
  45. 45. Exercise 2F; 1b, 2b, 3a, 9, 10ace

×