Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
UNIBA at EVALITA 2014-SENTIPOLC Task: 
Predicting tweet sentiment polarity combining 
micro-blogging, lexicon and semantic...
Introduction The Task 
Task Overview 
EVALITA 2014 SENTIment POLarity Classi
cation (SENTIPOLC) 
Subtask A - Subjectivity Classi
cation: classify subjectivity/objectivity of the tweet's 
content 
La Yamaha e buona solo ad alzar polemiche. E la Honda a...
cation: classify tweet's polarity: positive, negative, neutral 
and tweets expressing both positive and negative sentiment...
lm! ! pos 
Pilot Task, Irony Detection 
governo #monti : piu equita o piu equitalia? 
Basile and Novielli (UNIBA) UNIBA-SE...
The System Our Approach 
Our Approach 
Supervised approach relying on three kinds of features 
 Keywords and micro-bloggin...
The System Features 
Building a Sentiment Lexicon for Italian 
Automatic development of a sentiment lexicon starting form ...
The System Features 
Building the Word Space from Unlabeled Tweets 
Homogenous representation of both tweets and polarity ...
UNIBA at EVALITA 2014-SENTIPOLC Task: Predicting tweet sentiment polarity combining micro-blogging, lexicon and semantic f...
UNIBA at EVALITA 2014-SENTIPOLC Task: Predicting tweet sentiment polarity combining micro-blogging, lexicon and semantic f...
UNIBA at EVALITA 2014-SENTIPOLC Task: Predicting tweet sentiment polarity combining micro-blogging, lexicon and semantic f...
UNIBA at EVALITA 2014-SENTIPOLC Task: Predicting tweet sentiment polarity combining micro-blogging, lexicon and semantic f...
UNIBA at EVALITA 2014-SENTIPOLC Task: Predicting tweet sentiment polarity combining micro-blogging, lexicon and semantic f...
UNIBA at EVALITA 2014-SENTIPOLC Task: Predicting tweet sentiment polarity combining micro-blogging, lexicon and semantic f...
UNIBA at EVALITA 2014-SENTIPOLC Task: Predicting tweet sentiment polarity combining micro-blogging, lexicon and semantic f...
UNIBA at EVALITA 2014-SENTIPOLC Task: Predicting tweet sentiment polarity combining micro-blogging, lexicon and semantic f...
UNIBA at EVALITA 2014-SENTIPOLC Task: Predicting tweet sentiment polarity combining micro-blogging, lexicon and semantic f...
UNIBA at EVALITA 2014-SENTIPOLC Task: Predicting tweet sentiment polarity combining micro-blogging, lexicon and semantic f...
UNIBA at EVALITA 2014-SENTIPOLC Task: Predicting tweet sentiment polarity combining micro-blogging, lexicon and semantic f...
UNIBA at EVALITA 2014-SENTIPOLC Task: Predicting tweet sentiment polarity combining micro-blogging, lexicon and semantic f...
UNIBA at EVALITA 2014-SENTIPOLC Task: Predicting tweet sentiment polarity combining micro-blogging, lexicon and semantic f...
Upcoming SlideShare
Loading in …5
×

UNIBA at EVALITA 2014-SENTIPOLC Task: Predicting tweet sentiment polarity combining micro-blogging, lexicon and semantic features

1,207 views

Published on

=== Paper available here http://tiny.cc/ItalianSentimentAnalysis ===

English. This paper describes the UNIBA team participation in the SENTIPOLC task at EVALITA 2014. We propose a supervised approach relying on keyword, lexicon and micro-blogging features as well as representation of tweets in a word space. Our system ranked 1st in both the subjectivity and polarity detection sub- tasks. As a further contribution, we participated in the unconstrained run, investigating the use of co-training to automatically enrich the labelled training set.

Italiano. Questo articolo riporta i risultati della partecipazione del team UNIBA al task SENTIPOLC di EVALITA 2014. L’approccio supervisionato che abbiamo proposto affianca alle keyword la rappresentazione semantica dei tweet in uno spazio geometrico, l’utilizzo di feature tipiche dei micro-blog e di dizionari per la definizione della polarita` a priori del lessico dei tweet. Abbiamo sperimentato, inoltre, l’uso del co-training per l’arricchimento del dataset tramite annotazione automatica di nuovi tweet.

Published in: Technology
  • Be the first to comment

UNIBA at EVALITA 2014-SENTIPOLC Task: Predicting tweet sentiment polarity combining micro-blogging, lexicon and semantic features

  1. 1. UNIBA at EVALITA 2014-SENTIPOLC Task: Predicting tweet sentiment polarity combining micro-blogging, lexicon and semantic features Pierpaolo Basile and Nicole Novielli pierpaolo.basile@uniba.it, nicole.novielli@uniba.it Department of Computer Science University of Bari Aldo Moro (ITALY) EVALITA 2014 Pisa, 11th December 2014 Basile and Novielli (UNIBA) UNIBA-SENTIPOLC EVALITA 2014 11 Dec. '14 1 / 21
  2. 2. Introduction The Task Task Overview EVALITA 2014 SENTIment POLarity Classi
  3. 3. cation (SENTIPOLC) Subtask A - Subjectivity Classi
  4. 4. cation: classify subjectivity/objectivity of the tweet's content La Yamaha e buona solo ad alzar polemiche. E la Honda a crearne. ! subj Domani sera a Palazzo Chigi incontro informale tra Mario Monti e parti sociali: I leader di Cgil, Cisl, Uil e Ug... http: // bit. ly/ rNWoB0 ! obj Subtask B - Polarity Classi
  5. 5. cation: classify tweet's polarity: positive, negative, neutral and tweets expressing both positive and negative sentiment #Maroni La politica del governo Monti e sbagliata ! neg Coma iniziare un buon sabato? Guardandosi South Park il
  6. 6. lm! ! pos Pilot Task, Irony Detection governo #monti : piu equita o piu equitalia? Basile and Novielli (UNIBA) UNIBA-SENTIPOLC EVALITA 2014 11 Dec. '14 2 / 21
  7. 7. The System Our Approach Our Approach Supervised approach relying on three kinds of features Keywords and micro-blogging properties of tweets Content representation in a distributional semantic model Sentiment lexicon Our contribution Represent both the tweets and the polarity classes in the word space Automatically develop a sentiment lexicon for the Italian starting form SentiWordNet Basile and Novielli (UNIBA) UNIBA-SENTIPOLC EVALITA 2014 11 Dec. '14 3 / 21
  8. 8. The System Features Building a Sentiment Lexicon for Italian Automatic development of a sentiment lexicon starting form SentiWordNet Lexicon-based features features based on sentiment scores of tokens sentiment variation in the tweet Basile and Novielli (UNIBA) UNIBA-SENTIPOLC EVALITA 2014 11 Dec. '14 4 / 21
  9. 9. The System Features Building the Word Space from Unlabeled Tweets Homogenous representation of both tweets and polarity classes in the word space Distributional features tweet vector

×