SlideShare a Scribd company logo
1 of 21
東京大学情報理工学系研究科 / 産総研AIセンター
中山 英樹
1
2016年7月2日 Chainer Meetup #03
2
多様なマルチメディアセンサデータを
柔軟に理解・活用する知能システム
実世界
認知理解
Web
マイニング
ライフログ
インタフェース
詳細画像識別
マルチメディア
情報処理
深層学習
機械学習
マルチモーダル
表現学習
大規模画像
認識・検索
多様なマルチメディア
動画像、自然言語、音楽音声、…
マルチメディア
マイニング
画像知識獲得
マシン
パーセプション
 Chainer
 Torch
 Tensorflow
 Theano
 (Caffe…)
 そろそろ一本化したい。。
 今日はChainerを使って実装した事例をいくつか紹介します
◦ (私自身はそんなにChainerに詳しくないです…)
3
 動画像からの物体追跡・識別タスク
◦ 動画像数: 3862 (train), 555 (val), 937 (test)
◦ 物体種類数: 30
4
5
フレーム 双方向RNN 物体領域
(矩形)
の座標
http://www.nlab.ci.i.u-tokyo.ac.jp/pdf/ilsvrc2015poster.pdf
 概要図
◦ RNNで時間方向のダイナミクスをモデル化 → 物体座標位置を回帰
6
 詳細図
◦ RNNがネストされた構造
http://www.nlab.ci.i.u-tokyo.ac.jp/pdf/ilsvrc2015poster.pdf
7
 Microsoft Video to Language Challenge 2016
◦ 動画の内容説明文生成のコンペティション
◦ http://ms-multimedia-challenge.com/challenge
 NII+AIRC チーム
◦ 産総研AIセンター Perception and Language Understanding Project
(の言語&ビジョンサブグループ)
8
Sang Phan
(NII)
Natsuda Laokulrat
(AIRC)
Noriki Nishida
(Univ. Tokyo)
Zhongyuan Zhu
(Univ. Tokyo)
Yo Ehara
(AIRC)
Hideki Nakayama
(Univ. Tokyo, AIRC)
Naoaki Okazaki
(Univ. Tohoku, AIRC)
Yusuke Miyao
(NII, AIRC)
Shin'ichi Satoh
(NII, AIRC)
9
a woman is slicing some vegetables
a cat is trying to eat the food
a dog is swimming in the pool
 手法詳細は割愛…(未発表)
この成果は、国立研究開発法人新エネル
ギー・産業技術総合開発機構(NEDO)の
委託業務の結果得られたものです
 マルチモーダル映像認識 [Nishida, PSIVT’15]
10
11
12
モダリティA
(RGB画像)
モダリティB
(オプティカルフロー)
モダリティC
(デプス画像)
13
Late fusion model Early fusion model
14
15
 現状のさまざまな分野における個別タスクは、
結局どうエンコーダ・デコーダを作るかという話
 これが当たり前になったとして、何ができるようになるか?
16
英語 日本語
画像
音声
 画像を媒介にした異言語テキストの関連性学習 [Funaki, EMNLP’15]
◦ 各ドキュメントはそれぞれの言語に閉じているが、他のマルチメディア
情報で修飾されていることを期待
◦ Zero resourceで検索システムを学習
English Image Japanese
Training
English Japanese
二言語で対になった訓練データ
(関連する内容についてのペア) テスト(検索)
関連性学習
(共通する潜在的表現の導出)
◦ 多変量正準相関分析を用いた間接的な関連性学習
◦ 画像を軸にして、似た者同士が近くに集まる分散表現を得る
19
言語1
(View 2)
画像
(View 1)
言語2
(View 3)
3
V
W
V
U
 媒介データを増加させると精度が向上する
◦ チャンスレートは1%
[Train-E/I] [Train-I/J] [Train-E/J] [Test-E/J]
[100,200,
300,400]
[100,200,
300,400]
0-100で
Random
Sampling
100
English Image Japanese
[Train-E/I] E1 I1 -
[Train-I/J] - I2 J2
[Train-E/J] E3 - J3
[Test-E/J] E4 - J4
加えてデータはすべてランダムで取った
50回の実験の平均を取ってグラフにした
Zero-shot
(本命)
 Chainer派
◦ デバッグしやすい。中のコードも比較的読みやすい
◦ 新しい研究アイデアをすぐに試せる。トライアル & エラー がしやすい、
グラフ構造のコンパイルが必要ない
◦ データによって構造が変わるモデルを実装しやすい (recursive net など)
◦ CuPyは素晴らしい (ただindexingがNumpyより弱い?)
 非Chainer派
◦ 用意されている関数が他のライブラリに比べるとまだ乏しい
◦ マルチGPU環境はTensorflow等のほうが扱いやすい
◦ もう少しimmutableな設計にしてほしい
◦ 研究者コミュニティ(特に海外)では他のフレームワークが中心。ドキュ
メント、コードなどの情報量の面で不利
21

More Related Content

What's hot

Convolutional Neural Network @ CV勉強会関東
Convolutional Neural Network @ CV勉強会関東Convolutional Neural Network @ CV勉強会関東
Convolutional Neural Network @ CV勉強会関東Hokuto Kagaya
 
ニューラルネットワークの数理
ニューラルネットワークの数理ニューラルネットワークの数理
ニューラルネットワークの数理Task Ohmori
 
多層NNの教師なし学習 コンピュータビジョン勉強会@関東 2014/5/26
多層NNの教師なし学習 コンピュータビジョン勉強会@関東 2014/5/26多層NNの教師なし学習 コンピュータビジョン勉強会@関東 2014/5/26
多層NNの教師なし学習 コンピュータビジョン勉強会@関東 2014/5/26Takashi Abe
 
Deeplearningとは?
Deeplearningとは?Deeplearningとは?
Deeplearningとは?Yuto Suzuki
 
Deep Learning技術の最近の動向とPreferred Networksの取り組み
Deep Learning技術の最近の動向とPreferred Networksの取り組みDeep Learning技術の最近の動向とPreferred Networksの取り組み
Deep Learning技術の最近の動向とPreferred Networksの取り組みKenta Oono
 
20180305_ppl2018_演繹から帰納へ~新しいシステム開発パラダイム~
20180305_ppl2018_演繹から帰納へ~新しいシステム開発パラダイム~20180305_ppl2018_演繹から帰納へ~新しいシステム開発パラダイム~
20180305_ppl2018_演繹から帰納へ~新しいシステム開発パラダイム~Preferred Networks
 
Cvim saisentan-6-4-tomoaki
Cvim saisentan-6-4-tomoakiCvim saisentan-6-4-tomoaki
Cvim saisentan-6-4-tomoakitomoaki0705
 
鳥肌必至のニューラルネットワークによる近未来の画像認識技術を体験し、IoTの知られざるパワーを知る
鳥肌必至のニューラルネットワークによる近未来の画像認識技術を体験し、IoTの知られざるパワーを知る鳥肌必至のニューラルネットワークによる近未来の画像認識技術を体験し、IoTの知られざるパワーを知る
鳥肌必至のニューラルネットワークによる近未来の画像認識技術を体験し、IoTの知られざるパワーを知るKazuki Nakajima
 
Elasticsearchと機械学習を実際に連携させる
Elasticsearchと機械学習を実際に連携させるElasticsearchと機械学習を実際に連携させる
Elasticsearchと機械学習を実際に連携させるnobu_k
 
Deep Learningの技術と未来
Deep Learningの技術と未来Deep Learningの技術と未来
Deep Learningの技術と未来Seiya Tokui
 
がんばろう!はじめてのDnn!
がんばろう!はじめてのDnn!がんばろう!はじめてのDnn!
がんばろう!はじめてのDnn!Shushi Namba
 
Deep learningの概要とドメインモデルの変遷
Deep learningの概要とドメインモデルの変遷Deep learningの概要とドメインモデルの変遷
Deep learningの概要とドメインモデルの変遷Taiga Nomi
 
GTC 2016 ディープラーニング最新情報
GTC 2016 ディープラーニング最新情報GTC 2016 ディープラーニング最新情報
GTC 2016 ディープラーニング最新情報NVIDIA Japan
 
深層学習とTensorFlow入門
深層学習とTensorFlow入門深層学習とTensorFlow入門
深層学習とTensorFlow入門tak9029
 
深層学習 第4章 大規模深層学習の実現技術
深層学習 第4章 大規模深層学習の実現技術深層学習 第4章 大規模深層学習の実現技術
深層学習 第4章 大規模深層学習の実現技術孝昌 田中
 
GTC 2016 ディープラーニング最新情報
GTC 2016 ディープラーニング最新情報GTC 2016 ディープラーニング最新情報
GTC 2016 ディープラーニング最新情報NVIDIA Japan
 
20171201 dll#05 名古屋_pfn_hiroshi_maruyama
20171201 dll#05 名古屋_pfn_hiroshi_maruyama20171201 dll#05 名古屋_pfn_hiroshi_maruyama
20171201 dll#05 名古屋_pfn_hiroshi_maruyamaPreferred Networks
 
[2019-09-02] AI・IoT活用情報とGoogle Colab植物画像注釈
[2019-09-02] AI・IoT活用情報とGoogle Colab植物画像注釈[2019-09-02] AI・IoT活用情報とGoogle Colab植物画像注釈
[2019-09-02] AI・IoT活用情報とGoogle Colab植物画像注釈Eli Kaminuma
 

What's hot (20)

Convolutional Neural Network @ CV勉強会関東
Convolutional Neural Network @ CV勉強会関東Convolutional Neural Network @ CV勉強会関東
Convolutional Neural Network @ CV勉強会関東
 
ニューラルネットワークの数理
ニューラルネットワークの数理ニューラルネットワークの数理
ニューラルネットワークの数理
 
多層NNの教師なし学習 コンピュータビジョン勉強会@関東 2014/5/26
多層NNの教師なし学習 コンピュータビジョン勉強会@関東 2014/5/26多層NNの教師なし学習 コンピュータビジョン勉強会@関東 2014/5/26
多層NNの教師なし学習 コンピュータビジョン勉強会@関東 2014/5/26
 
Deeplearningとは?
Deeplearningとは?Deeplearningとは?
Deeplearningとは?
 
Deep Learning技術の最近の動向とPreferred Networksの取り組み
Deep Learning技術の最近の動向とPreferred Networksの取り組みDeep Learning技術の最近の動向とPreferred Networksの取り組み
Deep Learning技術の最近の動向とPreferred Networksの取り組み
 
20180305_ppl2018_演繹から帰納へ~新しいシステム開発パラダイム~
20180305_ppl2018_演繹から帰納へ~新しいシステム開発パラダイム~20180305_ppl2018_演繹から帰納へ~新しいシステム開発パラダイム~
20180305_ppl2018_演繹から帰納へ~新しいシステム開発パラダイム~
 
20150414seminar
20150414seminar20150414seminar
20150414seminar
 
Cvim saisentan-6-4-tomoaki
Cvim saisentan-6-4-tomoakiCvim saisentan-6-4-tomoaki
Cvim saisentan-6-4-tomoaki
 
鳥肌必至のニューラルネットワークによる近未来の画像認識技術を体験し、IoTの知られざるパワーを知る
鳥肌必至のニューラルネットワークによる近未来の画像認識技術を体験し、IoTの知られざるパワーを知る鳥肌必至のニューラルネットワークによる近未来の画像認識技術を体験し、IoTの知られざるパワーを知る
鳥肌必至のニューラルネットワークによる近未来の画像認識技術を体験し、IoTの知られざるパワーを知る
 
Elasticsearchと機械学習を実際に連携させる
Elasticsearchと機械学習を実際に連携させるElasticsearchと機械学習を実際に連携させる
Elasticsearchと機械学習を実際に連携させる
 
Deep Learningの技術と未来
Deep Learningの技術と未来Deep Learningの技術と未来
Deep Learningの技術と未来
 
がんばろう!はじめてのDnn!
がんばろう!はじめてのDnn!がんばろう!はじめてのDnn!
がんばろう!はじめてのDnn!
 
Deep learningの概要とドメインモデルの変遷
Deep learningの概要とドメインモデルの変遷Deep learningの概要とドメインモデルの変遷
Deep learningの概要とドメインモデルの変遷
 
GTC 2016 ディープラーニング最新情報
GTC 2016 ディープラーニング最新情報GTC 2016 ディープラーニング最新情報
GTC 2016 ディープラーニング最新情報
 
深層学習とTensorFlow入門
深層学習とTensorFlow入門深層学習とTensorFlow入門
深層学習とTensorFlow入門
 
深層学習入門
深層学習入門深層学習入門
深層学習入門
 
深層学習 第4章 大規模深層学習の実現技術
深層学習 第4章 大規模深層学習の実現技術深層学習 第4章 大規模深層学習の実現技術
深層学習 第4章 大規模深層学習の実現技術
 
GTC 2016 ディープラーニング最新情報
GTC 2016 ディープラーニング最新情報GTC 2016 ディープラーニング最新情報
GTC 2016 ディープラーニング最新情報
 
20171201 dll#05 名古屋_pfn_hiroshi_maruyama
20171201 dll#05 名古屋_pfn_hiroshi_maruyama20171201 dll#05 名古屋_pfn_hiroshi_maruyama
20171201 dll#05 名古屋_pfn_hiroshi_maruyama
 
[2019-09-02] AI・IoT活用情報とGoogle Colab植物画像注釈
[2019-09-02] AI・IoT活用情報とGoogle Colab植物画像注釈[2019-09-02] AI・IoT活用情報とGoogle Colab植物画像注釈
[2019-09-02] AI・IoT活用情報とGoogle Colab植物画像注釈
 

Viewers also liked

Chainer Update v1.8.0 -> v1.10.0+
Chainer Update v1.8.0 -> v1.10.0+Chainer Update v1.8.0 -> v1.10.0+
Chainer Update v1.8.0 -> v1.10.0+Seiya Tokui
 
NVIDIA 更新情報: Tesla P100 PCIe/cuDNN 5.1
NVIDIA 更新情報: Tesla P100 PCIe/cuDNN 5.1NVIDIA 更新情報: Tesla P100 PCIe/cuDNN 5.1
NVIDIA 更新情報: Tesla P100 PCIe/cuDNN 5.1NVIDIA Japan
 
Chainerを使って細胞を数えてみた
Chainerを使って細胞を数えてみたChainerを使って細胞を数えてみた
Chainerを使って細胞を数えてみたsamacoba1983
 
On the benchmark of Chainer
On the benchmark of ChainerOn the benchmark of Chainer
On the benchmark of ChainerKenta Oono
 
深層学習ライブラリの環境問題Chainer Meetup2016 07-02
深層学習ライブラリの環境問題Chainer Meetup2016 07-02深層学習ライブラリの環境問題Chainer Meetup2016 07-02
深層学習ライブラリの環境問題Chainer Meetup2016 07-02Yuta Kashino
 
ヤフー音声認識サービスでのディープラーニングとGPU利用事例
ヤフー音声認識サービスでのディープラーニングとGPU利用事例ヤフー音声認識サービスでのディープラーニングとGPU利用事例
ヤフー音声認識サービスでのディープラーニングとGPU利用事例Yahoo!デベロッパーネットワーク
 
俺のtensorが全然flowしないのでみんなchainer使おう by DEEPstation
俺のtensorが全然flowしないのでみんなchainer使おう by DEEPstation俺のtensorが全然flowしないのでみんなchainer使おう by DEEPstation
俺のtensorが全然flowしないのでみんなchainer使おう by DEEPstationYusuke HIDESHIMA
 
Chainer, Cupy入門
Chainer, Cupy入門Chainer, Cupy入門
Chainer, Cupy入門Yuya Unno
 
A Chainer MeetUp Talk
A Chainer MeetUp TalkA Chainer MeetUp Talk
A Chainer MeetUp TalkYusuke Oda
 
Chainer meetup
Chainer meetupChainer meetup
Chainer meetupkikusu
 
Chainer Meetup LT (Alpaca)
Chainer Meetup LT (Alpaca)Chainer Meetup LT (Alpaca)
Chainer Meetup LT (Alpaca)Jun-ya Norimatsu
 
Towards Chainer v1.5
Towards Chainer v1.5Towards Chainer v1.5
Towards Chainer v1.5Seiya Tokui
 
Chainer meetup20151014
Chainer meetup20151014Chainer meetup20151014
Chainer meetup20151014Jiro Nishitoba
 
Chainer Development Plan 2015/12
Chainer Development Plan 2015/12Chainer Development Plan 2015/12
Chainer Development Plan 2015/12Seiya Tokui
 
Capitalicoでのchainer 1.1 → 1.5 バージョンアップ事例
Capitalicoでのchainer 1.1 → 1.5 バージョンアップ事例Capitalicoでのchainer 1.1 → 1.5 バージョンアップ事例
Capitalicoでのchainer 1.1 → 1.5 バージョンアップ事例Jun-ya Norimatsu
 
深層学習ライブラリのプログラミングモデル
深層学習ライブラリのプログラミングモデル深層学習ライブラリのプログラミングモデル
深層学習ライブラリのプログラミングモデルYuta Kashino
 
ボケるRNNを学習したい (Chainer meetup 01)
ボケるRNNを学習したい (Chainer meetup 01)ボケるRNNを学習したい (Chainer meetup 01)
ボケるRNNを学習したい (Chainer meetup 01)Motoki Sato
 
Chainer Contribution Guide
Chainer Contribution GuideChainer Contribution Guide
Chainer Contribution GuideKenta Oono
 

Viewers also liked (20)

Chainer Update v1.8.0 -> v1.10.0+
Chainer Update v1.8.0 -> v1.10.0+Chainer Update v1.8.0 -> v1.10.0+
Chainer Update v1.8.0 -> v1.10.0+
 
NVIDIA 更新情報: Tesla P100 PCIe/cuDNN 5.1
NVIDIA 更新情報: Tesla P100 PCIe/cuDNN 5.1NVIDIA 更新情報: Tesla P100 PCIe/cuDNN 5.1
NVIDIA 更新情報: Tesla P100 PCIe/cuDNN 5.1
 
Chainerを使って細胞を数えてみた
Chainerを使って細胞を数えてみたChainerを使って細胞を数えてみた
Chainerを使って細胞を数えてみた
 
On the benchmark of Chainer
On the benchmark of ChainerOn the benchmark of Chainer
On the benchmark of Chainer
 
深層学習ライブラリの環境問題Chainer Meetup2016 07-02
深層学習ライブラリの環境問題Chainer Meetup2016 07-02深層学習ライブラリの環境問題Chainer Meetup2016 07-02
深層学習ライブラリの環境問題Chainer Meetup2016 07-02
 
ヤフー音声認識サービスでのディープラーニングとGPU利用事例
ヤフー音声認識サービスでのディープラーニングとGPU利用事例ヤフー音声認識サービスでのディープラーニングとGPU利用事例
ヤフー音声認識サービスでのディープラーニングとGPU利用事例
 
俺のtensorが全然flowしないのでみんなchainer使おう by DEEPstation
俺のtensorが全然flowしないのでみんなchainer使おう by DEEPstation俺のtensorが全然flowしないのでみんなchainer使おう by DEEPstation
俺のtensorが全然flowしないのでみんなchainer使おう by DEEPstation
 
Chainer, Cupy入門
Chainer, Cupy入門Chainer, Cupy入門
Chainer, Cupy入門
 
Deep parking
Deep parkingDeep parking
Deep parking
 
LT@Chainer Meetup
LT@Chainer MeetupLT@Chainer Meetup
LT@Chainer Meetup
 
A Chainer MeetUp Talk
A Chainer MeetUp TalkA Chainer MeetUp Talk
A Chainer MeetUp Talk
 
Chainer meetup
Chainer meetupChainer meetup
Chainer meetup
 
Chainer Meetup LT (Alpaca)
Chainer Meetup LT (Alpaca)Chainer Meetup LT (Alpaca)
Chainer Meetup LT (Alpaca)
 
Towards Chainer v1.5
Towards Chainer v1.5Towards Chainer v1.5
Towards Chainer v1.5
 
Chainer meetup20151014
Chainer meetup20151014Chainer meetup20151014
Chainer meetup20151014
 
Chainer Development Plan 2015/12
Chainer Development Plan 2015/12Chainer Development Plan 2015/12
Chainer Development Plan 2015/12
 
Capitalicoでのchainer 1.1 → 1.5 バージョンアップ事例
Capitalicoでのchainer 1.1 → 1.5 バージョンアップ事例Capitalicoでのchainer 1.1 → 1.5 バージョンアップ事例
Capitalicoでのchainer 1.1 → 1.5 バージョンアップ事例
 
深層学習ライブラリのプログラミングモデル
深層学習ライブラリのプログラミングモデル深層学習ライブラリのプログラミングモデル
深層学習ライブラリのプログラミングモデル
 
ボケるRNNを学習したい (Chainer meetup 01)
ボケるRNNを学習したい (Chainer meetup 01)ボケるRNNを学習したい (Chainer meetup 01)
ボケるRNNを学習したい (Chainer meetup 01)
 
Chainer Contribution Guide
Chainer Contribution GuideChainer Contribution Guide
Chainer Contribution Guide
 

Similar to マシンパーセプション研究におけるChainer活用事例

ディープラーニングによる時系列データの異常検知
ディープラーニングによる時系列データの異常検知ディープラーニングによる時系列データの異常検知
ディープラーニングによる時系列データの異常検知Core Concept Technologies
 
2017年度 河野ゼミ スタートアップ資料
2017年度 河野ゼミ スタートアップ資料2017年度 河野ゼミ スタートアップ資料
2017年度 河野ゼミ スタートアップ資料義広 河野
 
今さら聞けないITエンジニアのための人工知能
今さら聞けないITエンジニアのための人工知能今さら聞けないITエンジニアのための人工知能
今さら聞けないITエンジニアのための人工知能Keisuke Tameyasu
 
福岡市内のベンチャー企業が取り組む最新It技術
福岡市内のベンチャー企業が取り組む最新It技術福岡市内のベンチャー企業が取り組む最新It技術
福岡市内のベンチャー企業が取り組む最新It技術Takuya Andou
 
ディープラーニングで株価予測をやってみた
ディープラーニングで株価予測をやってみたディープラーニングで株価予測をやってみた
ディープラーニングで株価予測をやってみた卓也 安東
 
Deeplearningと髪型レコメンドへの応用
Deeplearningと髪型レコメンドへの応用Deeplearningと髪型レコメンドへの応用
Deeplearningと髪型レコメンドへの応用taichi nishimura
 
音楽・エンターテインメント x AI (29 Aug 2017)
音楽・エンターテインメント x AI (29 Aug 2017)音楽・エンターテインメント x AI (29 Aug 2017)
音楽・エンターテインメント x AI (29 Aug 2017)Yuki Abe
 
河野ゼミガイダンス資料2016
河野ゼミガイダンス資料2016河野ゼミガイダンス資料2016
河野ゼミガイダンス資料2016義広 河野
 
Study Group of NIPS2017 presented by webfarmer.ltd
Study Group of NIPS2017 presented by webfarmer.ltdStudy Group of NIPS2017 presented by webfarmer.ltd
Study Group of NIPS2017 presented by webfarmer.ltdWEBFARMER. ltd.
 
Twitter分析のためのリアルタイム分析基盤@第4回Twitter研究会
Twitter分析のためのリアルタイム分析基盤@第4回Twitter研究会Twitter分析のためのリアルタイム分析基盤@第4回Twitter研究会
Twitter分析のためのリアルタイム分析基盤@第4回Twitter研究会Yuya Unno
 
ディープラーニングの産業応用とそれを支える技術
ディープラーニングの産業応用とそれを支える技術ディープラーニングの産業応用とそれを支える技術
ディープラーニングの産業応用とそれを支える技術Shohei Hido
 
IoTを支える(かもしれない)技術
IoTを支える(かもしれない)技術IoTを支える(かもしれない)技術
IoTを支える(かもしれない)技術Masayuki Uchida
 
Lecture univ.tokyo 2017_okanohara
Lecture univ.tokyo 2017_okanoharaLecture univ.tokyo 2017_okanohara
Lecture univ.tokyo 2017_okanoharaPreferred Networks
 
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までー
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までーDeep Learningによる画像認識革命 ー歴史・最新理論から実践応用までー
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までーnlab_utokyo
 
サイバーセキュリティ対策の自動化に向けた機械学習技術の活用 [TTCセミナー, 2017/9/12]
サイバーセキュリティ対策の自動化に向けた機械学習技術の活用 [TTCセミナー, 2017/9/12]サイバーセキュリティ対策の自動化に向けた機械学習技術の活用 [TTCセミナー, 2017/9/12]
サイバーセキュリティ対策の自動化に向けた機械学習技術の活用 [TTCセミナー, 2017/9/12]Takeshi Takahashi
 
実社会・実環境におけるロボットの機械学習 ver. 2
実社会・実環境におけるロボットの機械学習 ver. 2実社会・実環境におけるロボットの機械学習 ver. 2
実社会・実環境におけるロボットの機械学習 ver. 2Kuniyuki Takahashi
 
ユーザ・エクスペリエンスからソーシャル・エクスペリエンスへ:現代ネットビジネスから読み解く「人間」「コンピュータ」「サービス」とは何か (in Japan...
ユーザ・エクスペリエンスからソーシャル・エクスペリエンスへ:現代ネットビジネスから読み解く「人間」「コンピュータ」「サービス」とは何か (in Japan...ユーザ・エクスペリエンスからソーシャル・エクスペリエンスへ:現代ネットビジネスから読み解く「人間」「コンピュータ」「サービス」とは何か (in Japan...
ユーザ・エクスペリエンスからソーシャル・エクスペリエンスへ:現代ネットビジネスから読み解く「人間」「コンピュータ」「サービス」とは何か (in Japan...Toshihiko Yamakami
 
Rustに触れて私のPythonはどう変わったか
Rustに触れて私のPythonはどう変わったかRustに触れて私のPythonはどう変わったか
Rustに触れて私のPythonはどう変わったかShunsukeNakamura17
 

Similar to マシンパーセプション研究におけるChainer活用事例 (20)

ディープラーニングによる時系列データの異常検知
ディープラーニングによる時系列データの異常検知ディープラーニングによる時系列データの異常検知
ディープラーニングによる時系列データの異常検知
 
2017年度 河野ゼミ スタートアップ資料
2017年度 河野ゼミ スタートアップ資料2017年度 河野ゼミ スタートアップ資料
2017年度 河野ゼミ スタートアップ資料
 
今さら聞けないITエンジニアのための人工知能
今さら聞けないITエンジニアのための人工知能今さら聞けないITエンジニアのための人工知能
今さら聞けないITエンジニアのための人工知能
 
福岡市内のベンチャー企業が取り組む最新It技術
福岡市内のベンチャー企業が取り組む最新It技術福岡市内のベンチャー企業が取り組む最新It技術
福岡市内のベンチャー企業が取り組む最新It技術
 
ディープラーニングで株価予測をやってみた
ディープラーニングで株価予測をやってみたディープラーニングで株価予測をやってみた
ディープラーニングで株価予測をやってみた
 
Deeplearningと髪型レコメンドへの応用
Deeplearningと髪型レコメンドへの応用Deeplearningと髪型レコメンドへの応用
Deeplearningと髪型レコメンドへの応用
 
音楽・エンターテインメント x AI (29 Aug 2017)
音楽・エンターテインメント x AI (29 Aug 2017)音楽・エンターテインメント x AI (29 Aug 2017)
音楽・エンターテインメント x AI (29 Aug 2017)
 
河野ゼミガイダンス資料2016
河野ゼミガイダンス資料2016河野ゼミガイダンス資料2016
河野ゼミガイダンス資料2016
 
Study Group of NIPS2017 presented by webfarmer.ltd
Study Group of NIPS2017 presented by webfarmer.ltdStudy Group of NIPS2017 presented by webfarmer.ltd
Study Group of NIPS2017 presented by webfarmer.ltd
 
Twitter分析のためのリアルタイム分析基盤@第4回Twitter研究会
Twitter分析のためのリアルタイム分析基盤@第4回Twitter研究会Twitter分析のためのリアルタイム分析基盤@第4回Twitter研究会
Twitter分析のためのリアルタイム分析基盤@第4回Twitter研究会
 
ディープラーニングの産業応用とそれを支える技術
ディープラーニングの産業応用とそれを支える技術ディープラーニングの産業応用とそれを支える技術
ディープラーニングの産業応用とそれを支える技術
 
[Japan Tech summit 2017] MAI 001
[Japan Tech summit 2017]  MAI 001[Japan Tech summit 2017]  MAI 001
[Japan Tech summit 2017] MAI 001
 
IoTを支える(かもしれない)技術
IoTを支える(かもしれない)技術IoTを支える(かもしれない)技術
IoTを支える(かもしれない)技術
 
Lecture univ.tokyo 2017_okanohara
Lecture univ.tokyo 2017_okanoharaLecture univ.tokyo 2017_okanohara
Lecture univ.tokyo 2017_okanohara
 
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までー
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までーDeep Learningによる画像認識革命 ー歴史・最新理論から実践応用までー
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までー
 
Py conkyushu2018
Py conkyushu2018Py conkyushu2018
Py conkyushu2018
 
サイバーセキュリティ対策の自動化に向けた機械学習技術の活用 [TTCセミナー, 2017/9/12]
サイバーセキュリティ対策の自動化に向けた機械学習技術の活用 [TTCセミナー, 2017/9/12]サイバーセキュリティ対策の自動化に向けた機械学習技術の活用 [TTCセミナー, 2017/9/12]
サイバーセキュリティ対策の自動化に向けた機械学習技術の活用 [TTCセミナー, 2017/9/12]
 
実社会・実環境におけるロボットの機械学習 ver. 2
実社会・実環境におけるロボットの機械学習 ver. 2実社会・実環境におけるロボットの機械学習 ver. 2
実社会・実環境におけるロボットの機械学習 ver. 2
 
ユーザ・エクスペリエンスからソーシャル・エクスペリエンスへ:現代ネットビジネスから読み解く「人間」「コンピュータ」「サービス」とは何か (in Japan...
ユーザ・エクスペリエンスからソーシャル・エクスペリエンスへ:現代ネットビジネスから読み解く「人間」「コンピュータ」「サービス」とは何か (in Japan...ユーザ・エクスペリエンスからソーシャル・エクスペリエンスへ:現代ネットビジネスから読み解く「人間」「コンピュータ」「サービス」とは何か (in Japan...
ユーザ・エクスペリエンスからソーシャル・エクスペリエンスへ:現代ネットビジネスから読み解く「人間」「コンピュータ」「サービス」とは何か (in Japan...
 
Rustに触れて私のPythonはどう変わったか
Rustに触れて私のPythonはどう変わったかRustに触れて私のPythonはどう変わったか
Rustに触れて私のPythonはどう変わったか
 

More from nlab_utokyo

画像の基盤モデルの変遷と研究動向
画像の基盤モデルの変遷と研究動向画像の基盤モデルの変遷と研究動向
画像の基盤モデルの変遷と研究動向nlab_utokyo
 
大規模言語モデルとChatGPT
大規模言語モデルとChatGPT大規模言語モデルとChatGPT
大規模言語モデルとChatGPTnlab_utokyo
 
Non-autoregressive text generation
Non-autoregressive text generationNon-autoregressive text generation
Non-autoregressive text generationnlab_utokyo
 
2020年度 東京大学中山研 研究室紹介
2020年度 東京大学中山研 研究室紹介2020年度 東京大学中山研 研究室紹介
2020年度 東京大学中山研 研究室紹介nlab_utokyo
 
20160601画像電子学会
20160601画像電子学会20160601画像電子学会
20160601画像電子学会nlab_utokyo
 
Machine Translation Introduction
Machine Translation IntroductionMachine Translation Introduction
Machine Translation Introductionnlab_utokyo
 
画像処理分野における研究事例紹介
画像処理分野における研究事例紹介画像処理分野における研究事例紹介
画像処理分野における研究事例紹介nlab_utokyo
 
Deep Learningと画像認識   ~歴史・理論・実践~
Deep Learningと画像認識 ~歴史・理論・実践~Deep Learningと画像認識 ~歴史・理論・実践~
Deep Learningと画像認識   ~歴史・理論・実践~nlab_utokyo
 
SSII2014 詳細画像識別 (FGVC) @OS2
SSII2014 詳細画像識別 (FGVC) @OS2SSII2014 詳細画像識別 (FGVC) @OS2
SSII2014 詳細画像識別 (FGVC) @OS2nlab_utokyo
 

More from nlab_utokyo (15)

画像の基盤モデルの変遷と研究動向
画像の基盤モデルの変遷と研究動向画像の基盤モデルの変遷と研究動向
画像の基盤モデルの変遷と研究動向
 
大規模言語モデルとChatGPT
大規模言語モデルとChatGPT大規模言語モデルとChatGPT
大規模言語モデルとChatGPT
 
Non-autoregressive text generation
Non-autoregressive text generationNon-autoregressive text generation
Non-autoregressive text generation
 
2020年度 東京大学中山研 研究室紹介
2020年度 東京大学中山研 研究室紹介2020年度 東京大学中山研 研究室紹介
2020年度 東京大学中山研 研究室紹介
 
20160601画像電子学会
20160601画像電子学会20160601画像電子学会
20160601画像電子学会
 
Machine Translation Introduction
Machine Translation IntroductionMachine Translation Introduction
Machine Translation Introduction
 
画像処理分野における研究事例紹介
画像処理分野における研究事例紹介画像処理分野における研究事例紹介
画像処理分野における研究事例紹介
 
ISM2014
ISM2014ISM2014
ISM2014
 
RecSysTV2014
RecSysTV2014RecSysTV2014
RecSysTV2014
 
20150930
2015093020150930
20150930
 
Deep Learningと画像認識   ~歴史・理論・実践~
Deep Learningと画像認識 ~歴史・理論・実践~Deep Learningと画像認識 ~歴史・理論・実践~
Deep Learningと画像認識   ~歴史・理論・実践~
 
MIRU2014 SLAC
MIRU2014 SLACMIRU2014 SLAC
MIRU2014 SLAC
 
SSII2014 詳細画像識別 (FGVC) @OS2
SSII2014 詳細画像識別 (FGVC) @OS2SSII2014 詳細画像識別 (FGVC) @OS2
SSII2014 詳細画像識別 (FGVC) @OS2
 
ICME 2013
ICME 2013ICME 2013
ICME 2013
 
Seminar
SeminarSeminar
Seminar
 

Recently uploaded

論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...
論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...
論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...Toru Tamaki
 
論文紹介:Semantic segmentation using Vision Transformers: A survey
論文紹介:Semantic segmentation using Vision Transformers: A survey論文紹介:Semantic segmentation using Vision Transformers: A survey
論文紹介:Semantic segmentation using Vision Transformers: A surveyToru Tamaki
 
Open Source UN-Conference 2024 Kawagoe - 独自OS「DaisyOS GB」の紹介
Open Source UN-Conference 2024 Kawagoe - 独自OS「DaisyOS GB」の紹介Open Source UN-Conference 2024 Kawagoe - 独自OS「DaisyOS GB」の紹介
Open Source UN-Conference 2024 Kawagoe - 独自OS「DaisyOS GB」の紹介Yuma Ohgami
 
論文紹介:Automated Classification of Model Errors on ImageNet
論文紹介:Automated Classification of Model Errors on ImageNet論文紹介:Automated Classification of Model Errors on ImageNet
論文紹介:Automated Classification of Model Errors on ImageNetToru Tamaki
 
TSAL operation mechanism and circuit diagram.pdf
TSAL operation mechanism and circuit diagram.pdfTSAL operation mechanism and circuit diagram.pdf
TSAL operation mechanism and circuit diagram.pdftaisei2219
 
スマートフォンを用いた新生児あやし動作の教示システム
スマートフォンを用いた新生児あやし動作の教示システムスマートフォンを用いた新生児あやし動作の教示システム
スマートフォンを用いた新生児あやし動作の教示システムsugiuralab
 
[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略
[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略
[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略Ryo Sasaki
 
SOPを理解する 2024/04/19 の勉強会で発表されたものです
SOPを理解する       2024/04/19 の勉強会で発表されたものですSOPを理解する       2024/04/19 の勉強会で発表されたものです
SOPを理解する 2024/04/19 の勉強会で発表されたものですiPride Co., Ltd.
 
Postman LT Fukuoka_Quick Prototype_By Daniel
Postman LT Fukuoka_Quick Prototype_By DanielPostman LT Fukuoka_Quick Prototype_By Daniel
Postman LT Fukuoka_Quick Prototype_By Danieldanielhu54
 

Recently uploaded (9)

論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...
論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...
論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...
 
論文紹介:Semantic segmentation using Vision Transformers: A survey
論文紹介:Semantic segmentation using Vision Transformers: A survey論文紹介:Semantic segmentation using Vision Transformers: A survey
論文紹介:Semantic segmentation using Vision Transformers: A survey
 
Open Source UN-Conference 2024 Kawagoe - 独自OS「DaisyOS GB」の紹介
Open Source UN-Conference 2024 Kawagoe - 独自OS「DaisyOS GB」の紹介Open Source UN-Conference 2024 Kawagoe - 独自OS「DaisyOS GB」の紹介
Open Source UN-Conference 2024 Kawagoe - 独自OS「DaisyOS GB」の紹介
 
論文紹介:Automated Classification of Model Errors on ImageNet
論文紹介:Automated Classification of Model Errors on ImageNet論文紹介:Automated Classification of Model Errors on ImageNet
論文紹介:Automated Classification of Model Errors on ImageNet
 
TSAL operation mechanism and circuit diagram.pdf
TSAL operation mechanism and circuit diagram.pdfTSAL operation mechanism and circuit diagram.pdf
TSAL operation mechanism and circuit diagram.pdf
 
スマートフォンを用いた新生児あやし動作の教示システム
スマートフォンを用いた新生児あやし動作の教示システムスマートフォンを用いた新生児あやし動作の教示システム
スマートフォンを用いた新生児あやし動作の教示システム
 
[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略
[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略
[DevOpsDays Tokyo 2024] 〜デジタルとアナログのはざまに〜 スマートビルディング爆速開発を支える 自動化テスト戦略
 
SOPを理解する 2024/04/19 の勉強会で発表されたものです
SOPを理解する       2024/04/19 の勉強会で発表されたものですSOPを理解する       2024/04/19 の勉強会で発表されたものです
SOPを理解する 2024/04/19 の勉強会で発表されたものです
 
Postman LT Fukuoka_Quick Prototype_By Daniel
Postman LT Fukuoka_Quick Prototype_By DanielPostman LT Fukuoka_Quick Prototype_By Daniel
Postman LT Fukuoka_Quick Prototype_By Daniel
 

マシンパーセプション研究におけるChainer活用事例