Successfully reported this slideshow.
Your SlideShare is downloading. ×

2020年度 東京大学中山研 研究室紹介

Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Loading in …3
×

Check these out next

1 of 22 Ad

More Related Content

Recently uploaded (20)

Advertisement

2020年度 東京大学中山研 研究室紹介

  1. 1. 1
  2. 2. 2 Multimodal intelligence integrating diverse data with deep learning Computer Vision Natural Language Processing Multimodal Machine Learning Deep Learning
  3. 3. 3 Robust/Few-shot learning theory ACCV’18, ICIP’19 ConvNets architectures BMVC’13, ICIP’19 Fine-grained recognition ICME’13, CLEF’13 Large-scale image tagging CVPR’10, ECCV’10, ICPR’16 Medical image analysis ISBI’18, CIKM’19, Neurocomputing’19 Visual aesthetics analysis ACMMM’18 Scene text erasing WACV’20 Visual relationship detection ISM’17, ICIP’20
  4. 4. 4 Word representation learning IJCNLP’17, ICLR’18 Machine translation MT’17, ACL’18, ACL’19, AAAI’20 Cross-lingual retrieval EMNLP’15 a cat is trying to eat the food Image/video caption generation COLING’16 , LREC’18 Visual phrase grounding LREC’20 Multimodal machine translation CICLING’19 Unsupervised discourse parsing SIGDIAL’18, TACL’20 Neural input method NAACL’19
  5. 5.  Discriminative initialization of Convolutional Neural Network (CNN) [BMVC’13] ◦ Closed-form initialization using Fisher Discriminant Analysis  Frequency-domain CNNs [ICIP’19, MMAsia’19] 5
  6. 6. 6  Control the number of output words using a recurrent neural network Jin et al., Annotation Order Matters: Recurrent Image Annotator for Arbitrary Length Image Tagging, In Proc. ICPR, 2016.
  7. 7.  Car types identification  Plant species identification ◦ ImageCLEF 2013 Plant Identification Challenge (1st place)  Character recognition ◦ ICDAR Script identification challenge (3rd place) 7 Acura RLMitsubishi Lancer Toyota Camry Audi S4 Honda Accord Mercedes-Benz C-Class
  8. 8.  Stochastically switch the cross-entropy loss(CCE)and the mean absolute error loss(MAE) 8Hataya et al., LOL: LEARNING TO OPTIMIZE LOSS SWITCHING UNDER LABEL NOISE, 2018.
  9. 9.  There exist some “easy” examples which can be correctly classified at the beginning stage of learning  “Hard” data matters more 9 Kishida et al., EMPIRICAL STUDY OF EASY AND HARD EXAMPLES IN CNN TRAINING, ICONIP 2019.
  10. 10.  Co-segmentation: extract common objects in multiple images 10 Chen et al., Semantic Aware Attention Based Deep Object Co-segmentation, In Proc. ACCV, 2018.
  11. 11. Han et al., "Learning More with Less: Conditional PGGAN-based Data Augmentation for Brain Metastases Detection Using Highly-Rough Annotation on MR Images", In Proc. of CIKM, 2019. Han et al., "Combining Noise-to-Image and Image-to-Image GANs: Brain MR Image Augmentation for Tumor Detection", IEEE Access, Vol.7, pp.156966-156977, 2019.
  12. 12.  Erasing texts in general images [WACV’20]  Erasing general objects [Lazarski, 2018] 12 https://www.youtube.com/watch?v=JvTvyOeAGbU
  13. 13.  Diversification of decoding [ACL’19]  Resource-efficient MT ◦ Compression of word vectors (99% off!) [ICLR’18] ◦ Rapid decoding [ACL’18, AAAI’20] 13 Input Beam Search Proposed Syntactic Diversity
  14. 14. 14  Obtain syntactic word features Permutation Matrix → update steps
  15. 15.  Incorporate Quantum Walk for graph representation learning 15
  16. 16. 16 a woman is slicing some vegetables a cat is trying to eat the food a dog is swimming in the pool Input (frame sequence) Output (word sequence) “Translation” from video to text! <BOS> a woman is cooking in the kitchen <EOS> context vector
  17. 17.  Multimodal Machine Translation [CICLING’19] ◦ Improve translation with the help of vision 17  Phrase localization [LREC’20] ◦ Identify the image region for a given phrase
  18. 18.  Presentations at prestigious conferences/journals ◦ ACL, AAAI, WACV, TACL, ICIP (2020) ◦ ACL, CIKM, Neurocomputing, 3DV, ICIPx3 (2019) ◦ ACL, ICLR, ACCV, SIGDIAL, LREC (2018) ◦ IJCNLP, ICDAR (2017)  Awards ◦ 言語処理学会年次大会 優秀賞、若手奨励賞 (2020) ◦ CVIM研究会奨励賞 (2020) ◦ 情報理工学系研究科長賞 (2020) ◦ 画像の認識・理解シンポジウム 学生奨励賞 (2019) ◦ 電子情報通信学会医用画像研究会奨励賞 (2019) ◦ 言語処理学会年次大会 最優秀賞 (2018) ◦ NMT@ACL outstanding paper award (2017) ◦ 人工知能学会全国大会 優秀賞, 学生奨励賞x2 (2017) 18
  19. 19.  Faculty:1(Nakayama)  PhD students:10  Master’s students:12(4~5 per each year)  Secretary:1 19
  20. 20.  Monday: Group meeting (2~3h) ◦ Short progress report by all, discussion, study session ◦ Mainly organized by PhD students  Wednesday: Main meeting (2~3h) ◦ Progress report (3~4 students) ◦ Presentation practice, etc.  Others ◦ One-on-one meeting ◦ Project meeting  No other hours on duty 20
  21. 21.  Workstation (2GPUs) for each student  Share machines ◦ 4GPUs x 4 ◦ 8GPUs x 2  Cloud computers ◦ University cloud system ◦ ABCI 21
  22. 22. 22

×